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Endorsements

“Looks very thoughtfully written for easy understanding.”
- Mike Summerhays, Engineering Fellow

“That makes so much sense.”
- Mary Ann Brubaker, 85 years old (commenting on the fractions chapter)

“I thought the fractions chapter was quite clear and easy to understand and follow.”
- Elizabeth Mayner, former homeschool mom

“An impressive book.”
- Marilyn Frydrych, math teacher and math lab coordinator at Pikes Peak State
College

“I completed chapter 1 and really enjoyed the process of relearning and better under-
standing fractions! Your examples are easy to identify with, your explanations are clear,
and your conversational style made me feel like I had the help of a tutor via the text.”

- Gayle Meredith, senior library associate

“Most math teachers (and students!) are deeply familiar with the common impulse in
mathematics education to “just learn the formula,” apply it, and move on. After all,
that’s the goal, right? Well, actually no, not if you really want to learn mathematics.
What I so appreciate about Andrew Kelley’s work is his relentless emphasis on under-
standing real mathematics – the ‘why’ behind the formula – and his skillful explanation
that makes those beautiful concepts accessible to the student. I believe Andrew’s work
can turn what many students experience as dull and dry manipulation of indecipherable
symbols into a delightful exercise in finally understanding the beauty, usefulness, and
design of mathematics. You won’t be disappointed.”

- Jim DeKorne, retired math teacher and former principal of Colorado Springs
Christian Schools

“So far, I’m loving it!...I really like your descriptions and how you develop ideas/concepts,
especially in discussing the inherent properties of seemingly simple ideas (which, of
course, are not usually simple)...I also very much like how you explain the logic and
thought processes behind each concept. You present so much more than a set of rules
(most math textbooks don’t do much more than presenting a set of rules); you really
give the reader a sense of how these ideas and concepts were developed and why...You
also do a great job of connecting the concepts...Your Motivation questions are excel-
lent, really drawing readers to consider the concepts more deeply...You’ve combined so
many deeply connected ideas and provided understanding of why these concepts are
important, and how they might be used and applied.”

- Erica Hastert, college math teacher

“The book will make a great companion to math textbooks throughout subjects like
algebra, advanced algebra, geometry, trigonometry, and calculus. The conversational
style the book is written in makes it easy to understand and follow. It would make a
welcome addition to texts used by homeschool parents to help explain new concepts,
new math principles, and new ways of thinking that are typically stumbling blocks for
many being introduced to math throughout the Jr. High–High school years.”

- Jim Crowder, PhD, Mathematician and Engineering Fellow



Preface

Understanding is a fountain of life to those who have it. . .
–Solomon, King of Israel, (ca. 950 B.C.) Proverbs 16:22 (NASB)

Do you want to understand math? This book is for you. Does math seem like a
bunch of arbitrary rules? This book is here to explain clearly why most of the rules
aren’t arbitrary at all. There are good reasons for them!

The purpose of this book is to explain the reasons for the main rules learned in
middle school and high school mathematics (i.e., for 6th through 12th grade). My goal
throughout the book is to explain why the rules work the way they do. I don’t assume
you already know all the rules, and so I review each rule before explaining the reason
behind it. For most rules, I do not give rigorous proofs. Rather, I instead focus on the
essence for why the rules work. I focus on the heart of why they are true. My intent
has been to be informative.

? Question. Why should you learn reasons for the rules?

If you understand why a rule works and know why it is true, then you are more likely
to remember the rule, use it correctly, and know when it applies and when it doesn’t.
Having real insight can also set you apart. If you can only mechanically follow rules
without understanding them, what sets you apart from a computer? Machines can do
math, but they still lack real understanding. People who don’t want to be replaceable
by a computer, should seek to understand. Further, when math makes sense, it is much
more enjoyable.

This book isn’t meant to be a standard textbook used for just one year of school.
Rather, I have tried to make it the best supplement to use while studying math in
middle school and high school. Homeschoolers and those teaching themselves should
find this book incredibly helpful. Also, any adult who has not done math in many years
but wants to learn more should find this book helpful. Although my target audience is
people who are teaching themselves math, teachers may also benefit from this book by
learning new ways to explain concepts. Nevertheless, this book is geared to students.

Note to the reader

Is learning how to walk di�cult? If you’ve ever watched a very small child learn to walk,
then perhaps you agree with me that learning to walk is indeed di�cult. Of course, after
someone gets the hang of it, walking eventually becomes easy. All this is the same with
math:

Math is hard . . . until you get it, and then it’s easy.

This book is written so that people who aren’t strong at math can understand it.
I’ve tried to explain things simply and tried to get at the heart of what’s going on.
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If you have access to a very patient and skilled teacher who has a deep knowledge
of mathematics, then that’s the easiest way to learn. I have attempted to make this
book be as close to that as I can. A great math teacher will ask many questions,
and so this book also contains many questions in it, and to get the most from it, you
should try to answer most of them. Even with a less-than-ideal background in math,
you probably can answer most questions labeled Motivation or Exercise. Questions
labeled Motivation are usually meant to lead you to a point I am trying to make.
These are extremely important questions to attempt before reading the answers.

! Key Fact 1. In math, there is no substitute for thinking and attempting problems
yourself.

When learning to walk, it is necessary to get on your feet and try. Falling sometimes
is inevitable and is not at all a failure. Failing to try at all is what will hinder growth. So
don’t be afraid that you might make a mistake! Mistakes are normal. After an honest
attempt at a Motivation or Exercise, you can immediately catch any errors by then
reading the solution.

The questions labeled Exercise are meant to have answers that are very similar to
what was discussed prior to them. They are there simply to practice and cement what
you just learned. I recommend that you solve each Exercise. Also, if you are tempted
to skip the Exercise problems, please don’t give in to that temptation, not even if
they seem straightforward. Only skip them if you have already mastered the material
in that section. There is a real danger in math in fooling yourself into thinking you
understand something when you haven’t quite made it there. Doing some practice helps
a lot. Further, even if you do understand it, practicing will help you remember. There
is not an overabundance of questions labeled Exercise because this book is not meant
to drill the rules into your head by endless repetition. Hence, you shouldn’t be bored
at all if you do all of the exercises. For questions labeled Motivation or Exercise, be
sure to answer them before reading the answers. Read with pencil and paper at hand!

? Question. Do you have to answer the main questions (which are in a box like
this) before reading the answer?

No, each Question written this way (in a gray box, with a big question mark to
the left) is not intended to be immediately answerable by the reader. Rather, they are
the main questions which I, the author, will always answer myself. They often are the
questions that the whole section is devoted to answering.

Finally, eachChallenge is intended to cover material a little more advanced than the
main flow of text. Readers who want to stretch themselves should attempt to answer
them before reading the answer that follows. All readers should at least read each
Challenge and their answers.

Just as math builds on itself, so does this book. If you consider yourself ready for
any particular chapter however, then feel free to read that first. For advanced readers
who want to skip, I do highly recommend at least reading the main Questions and
Key Facts in each chapter you intend to skip. They are highlighted in gray boxes to
set them apart.

? Question. How else can you get the most from this book?

You will need something to write with as you read, since you will have to answer
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questions as you go along. One practical suggestion is to have an additional piece of
paper handy. Whenever you come to an exercise or motivation, you are encouraged
to cover up the answer as you read the problem so that you don’t accidentally see the
answer before you work on figuring it out yourself. You will need self-control. If you skip
the work, then you’re also skipping the possible learning. There is no magic formula
that makes learning e↵ortless, and so you should commit to thinking through what you
read and attempt exercises and motivations before reading the answer.

What you get out of this book is determined by what you put into it.

This is no di↵erent from learning anything else, which brings us to a central truth:

! Key Fact 2. Learning anything well takes a lot of e↵ort.

Do you want to learn how to play the violin or cello or French horn? Then you will
need to do a lot of practice. Do you want to learn a new language? Then you’ll need to
put a lot of time into it. Do you want to become a doctor, nurse, lawyer, or engineer?
Then you’ll need to study a lot. The same is true of math. In this book, I try to make
things as easy as possible, but there is still some amount of e↵ort and work required
to master it, just like anything else. Also, note that reading a math book takes much
more e↵ort than reading a novel. You have to think! And it often helps to reread a
sentence, paragraph, or section. If something doesn’t make perfect sense, then stop to
think about it for a little bit, or go back and reread that section a second or third time.
This is hard work, but “all hard work brings a profit” as it says in the book of Proverbs
(NIV). So work hard, because it will pay o↵.

A note to parents

This book is intended as the best supplement to traditional curriculum. Without writing
a 2,000 page book, it simply isn’t possible to write a single book that thoroughly covers
all of 6th grade through 12th grade math. While I try to focus on what is important,
if I leave something out, that doesn’t guarantee that it is unimportant. Rather, I have
attempted to include anything important for which I have something insightful to say.

Please require your son or daughter to attempt each question labeled Motivation
or Exercise before reading the solution that follows. Readers will get much more out
of it if they at least try these problems before reading the answers.

If you want to work through this book with your son or daughter, then let me
encourage you that you can learn as much of this material as you’re motivated to learn.
This is true even if you haven’t done math in many years and even if you struggled
with math when you were in school. If you do want to learn this material yourself, then
allow me to encourage you to not make this book your only resource. Whether or not
you read this book with your kids, one way to see if they understand this material is
if they can explain the topics to others. If your kids can explain what they learn, then
that means they have digested the material and understand it well. Another way to
see if they understand the material is if they start doing better in whatever curriculum
the present book is a supplement to. Understanding the fundamentals well is helpful no
matter what curriculum you use.

The background I assume of readers is that they have at least seen fractions, vari-
ables, and the equals symbol, but I don’t assume they have a good grasp of any of those
topics. Someone completely new to variables might be able to understand the first two
chapters as they study their main curriculum.
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The chapters on geometry, trigonometry, logic, probability, and calculus can serve
well as a first introduction to those subjects, but I recommend using them only as a
supplement to your main curriculum. In every chapter except Chapters 6 and 12 (and
maybe Chapter 9), readers will need to do some practice problems from a traditional
textbook in order to make the most of the present book.

Like math in general, this book builds on itself. For instance, I intentionally put
the arithmetic chapter after the pre-algebra chapter to better cover arithmetic. While
arithmetic is normally covered before 6th grade, I include a chapter on it after pre-
algebra so that readers can see how a little bit of algebra explains what they have
already learned in arithmetic. I recommend that if you have your student read the pre-
algebra chapter, then also assign most of the chapter on arithmetic (skipping perhaps
Section 3.6). Also, the topic of fractions is usually introduced before the 6th grade, but
too many people in high school struggle with fractions. That is one reason I start with
fractions; it is because it should help many students in middle school and high school.

As for other prerequisites, note that the calculus chapter does assume readers under-
stand the core material in the algebra and geometry chapters. Most of the precalculus
chapter will also be helpful for calculus. The final chapter is probably best left as op-
tional, bonus material for those who are interested. It consists of extra material that
does not normally fit in a typical curriculum. Much of it can be read after the logic chap-
ter (but some parts can be read earlier). Section 12.9 uses probability, and Section 12.10
uses calculus (as do most sections that follow it).

About the author

Andrew is a mathematician with over 12 years of experience in math education. He
has been a tutor, teaching assistant, and professor and has had the pleasure of working
with students in elementary school, middle school, high school, and college. Some of his
students have even been adult learners in their 50s. Andrew first knew he wanted to be
a mathematician when he began tutoring math at Pikes Peak Community College. He
found that helping people learn math is very satisfying. After having been a professor for
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Contact the author

Did you find a mistake or have any feedback on this book? Let me encourage you to
email me at my personal email. Don’t forget the second “e” in my last name.

If you found an error, I o↵er the following payments for the first person to contact me:

• $5 for the first to report a mathematical error

• $3 for the first to report a non-mathematical typo or an unintentional grammatical
error (except for commas and also except for apostrophes in expressions such as
2’s or x’s, which I intentionally write that way)

For people reading early drafts, I also often paid $1 per “su�ciently” helpful suggestion,
but you should not count on me still paying this. The website for this book is the
following:

www.UnderstandMathRules.com

If you find an error, please first check if it is listed there.

Contents of this book

Chapter 1: Fractions – Do you wish that fractions made sense? Have you ever been
confused by what you get if you have a fraction inside another fraction? This chapter
makes fractions accessible by starting with the fundamentals and making progress step
by step.
Chapter 2: Pre-algebra – Does math seem more di�cult when you have to use
variables? This chapter helps you understand variables so that they are not intimidating.
This chapter also lays the foundation of equations and how to think about them. Further,
why is 20 = 1 and 2�1 = 1/2? This chapter explains why, and in the process, it makes
exponents approachable. Practically all of math is built on the foundation laid in this
chapter.
Chapter 3: Arithmetic – How does the decimal system work? Why does multiplica-
tion of multi-digit numbers work the way it does? Why can’t we divide by 0? How do
computers represent whole numbers? This chapter answers these questions and more.
It is a continuation of the pre-algebra chapter and builds o↵ of it.
Chapter 4: Algebra – Do square roots or logarithms seem confusing? Would you
like to master fundamental topics such as factoring? Do you want a solid foundation
in the math that is used everywhere in science and engineering? This chapter will help
you gain that understanding. Exactly what is classified as pre-algebra or algebra is
somewhat arbitrary. (Similarly, splitting algebra into two parts also is arbitrary.) If you
don’t already understand variables or the concept of distributing, then the pre-algebra
chapter would be very helpful to read first.
Chapter 5: Geometry – Would you like to learn why the area of a circle is ⇡r2? Do
you want to understand why the Pythagorean theorem is true? This chapter explains
both of these. Altogether, this chapter includes only a small sample of what can be
covered in a high school geometry class. One reason this chapter is so short is that if
geometry is taught in a proof-based way, then students taking such a course are already
learning good reasons for the results that they learn. Most of the proofs that this book
contains are found in the geometry and logic chapters. If you read this chapter, you
may also want to read the logic chapter.
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Chapter 6: Logic – Can you recognize logical fallacies in flawed arguments? The last
section of this chapter can help you do so. It is written from a Christian perspective
and covers both mathematical and non-mathematical fallacies. On a more mathematical
note, did you know that there are infinitely many prime numbers? And would you like to
know why? Do you want to know why

p
2 is an irrational number? This chapter gives

understandable proofs for these results. Indeed, the first two sections of the chapter
cover (a) basics of logic and (b) proofs. All of math is built on the foundation of logic.
This chapter helps you understand that foundation. Some readers might skip the first
two (more mathematical) sections and first read either of the last two. Section 6.3 covers
fundamentals that equip readers with basic concepts for a grounded worldview.
Chapter 7: Trigonometry – Do you want to understand trigonometric identities
or have an intuitive grasp of the trig functions? This chapter explains what is most
fundamental about trigonometry. In addition to this, the precalculus and complex
numbers chapters also talk about trigonometry.
Chapter 8: Complex numbers i =

p
�1 – Complex numbers are also called imagi-

nary numbers. Does
p
�1 seem mysterious, weird, or useless to you? This chapter tries

to demystify complex numbers and explain some ways in which they are useful. As a
nice bonus, this chapter also gives a way to help remember two of the most fundamental
trigonometric identities.
Chapter 9: Probability – This chapter explains what is most important in a first
course on probability. It introduces set theory in order to help clear up a common
source of confusion–when to multiply probabilities and when to add them. A reader
who understands this material will be well prepared to excel in a college level course in
probability.
Chapter 10: Precalculus – Do you want a deeper understanding of one of the most
important concepts in all of math? Then you will want to understand what this chapter
says about functions. This includes a section giving a graphical reason why

p
a+ b 6=p

a +
p
b. This chapter focuses on preparing the reader for calculus and so leaves out

some material that is not essential to master (assuming you just want to be prepared
for calculus). However, a few useful, additional topics are also included.
Chapter 11: Calculus – Many students take calculus in college, and many take it in
high school. Hence, calculus is both college level and high school level. Rather than
give rigorous proofs for all the results, this chapter gives intuitive explanations instead.
This includes a section explaining the essence of the Fundamental Theorem of Calculus.
Also, because some students find infinite series so challenging, this chapter gives insight
into what is otherwise considered a di�cult topic. The material in this chapter is called
“single variable calculus” and includes topics from what high schools in the United States
call “Calculus AB” and “Calculus BC,” which at a college might be called “Calculus I”
and “Calculus II.”
Chapter 12: What is mathematics? – Would you like to learn some fascinating
math that is not normally taught in middle school or high school? Would you like
to learn about what else there is to math beyond traditional curriculum? Then this
chapter is for you. Note that other than perhaps Section 12.3, the first nine sections do
not require any knowledge of calculus, but four of the remaining ones do use calculus.
This final chapter is unique in that unlike all the other chapters of this book, some of
the results are mentioned without giving adequate justification for them. After all, some
theorems in math are understandable to a high schooler while simultaneously having
proofs that take hundreds of pages long! This chapter includes some beautiful pieces
of math to give a broader perspective on what math has been done that is beyond
traditional curriculum. A little bit of the history of math is also included.
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Chapter 1

Fractions

By applying yourself to the task of becoming a little better each and every
day over a period of time, you will become a lot better.

–John Wooden, greatest basketball coach of all time

Let’s begin with an important question:

? Question 1.1. What does a fraction even mean?

The meaning of the fraction one half, written 1
2 , is to take 1 of something, split it into

2 equal sized pieces (that together make up the whole), and then each of those 2 pieces
is called 1

2 . Similarly, the meaning of one third, written 1
3 , is to split 1 of something into

3 equal sized pieces (that together make up the whole), and then each of those 3 pieces
is called 1

3 .

Exercise 1.2. What does the fraction one fourth mean? (A fourth is written as 1
4 .)

Recall from the preface that everything labeled as Motivation or Exercise is some-
thing that you should do your best to answer first before reading the answer. If you
are stuck on an exercise, one good thing to try is to reread the text that precedes the
exercise. After a solid e↵ort, you may then read the answer that follows.

With that said, to get 1
4 is to take 1 of something, split it into 4 equal sized pieces

(that together make up the whole), and then each of those 4 pieces is called 1
4 .

Sometimes, the number on top of a fraction, which is called the numerator, is
greater than 1. In this case, there are actually two common interpretations of such a
fraction. We will spend time covering both interpretations so that you can become more
comfortable with fractions. This will take some e↵ort but is worth it.

For example, let’s consider what 2
5 means. One interpretation is that it is just 2 of

whatever 1
5 is, that is 2 times 1

5 . This is why 2
5 can be read as “two fifths.” The other

meaning of 2
5 is to take 2 of something, split that into 5 equal sized pieces (that together

make the whole 2), and then each of those pieces is called 2
5 . This is why

2
5 can be read

as “2 divided by 5” and written as 2÷ 5.
Note that the number on the bottom of a fraction is called the denominator. Also,

note that the fraction 2
5 can also be written as 2/5, and similarly for other fractions.

Let’s do an example where we interpret a fraction as division. In particular, let’s
interpret the fraction 2

8 as 2 ÷ 8. To do this, let’s pretend that we have 2 pizzas that
we are dividing evenly among 8 people. Then we must divide the 2 pizzas evenly into 8
total parts. To do that, as can be seen in the picture below, each pizza needs to be cut
into 4 pieces. Hence, 2 pizzas divided into 8 parts is one fourth of a pizza (per part).

1



Understand Math: Reasons for the Rules Chapter 1

Exercise 1.3. Suppose we have 2 pizzas still. How can we interpret the fraction 2
4 in

terms of the 2 pizzas? (This is similar to the 2
8 we just looked at.)

Since it is so incredibly important, please allow me to repeat that it is far better
to attempt an exercise first and then read the answer carefully instead of just skipping
to the answer before thinking through it. Let me encourage you that some amount
of struggling in math problems is perfectly normal. Also, it’s no problem at all to
make mistakes when you first try on your own. Mistakes are perfectly normal and are
opportunities to learn more.

We may think of the 2
4 as dividing our 2 pizzas into 4 equal parts. To get 4 parts out

of 2 pizzas, we must split both pizzas into 2 pieces each, or in other words, into halves.
So then, 2 pizzas divided into 4 equal parts would make each part one half of a pizza.
So the amount of pizza that 2

4 here represents is one half of a pizza. What we have done
in this exercise is divide 2 pizzas into 4 parts. We are thinking of 2

4 as 2÷ 4.

1
2

Before the next exercise, let’s go back to the fraction 2
8

from before Exercise 1.3. This time, let’s interpret 2
8 not

as 2÷ 8 but instead as 2 times 1
8 . To do this, let’s pretend

that we have only 1 pizza. Then 1
8 of a pizza is an eighth of

one pizza, and 2
8 is then two eighths, but two eighths of a

pizza make up one fourth of that pizza because four groups
of two eighths make up eight eighths. So then, we find that
2
8 pizzas is one fourth of a pizza, the same thing that we found just before Exercise 1.3.

Exercise 1.4. Suppose we have only 1 pizza. How can we interpret the fraction 2
4 in

terms of the 1 pizza?

Here, instead of thinking of 2
4 as 2 divided by 4, we can think of it as two fourths of

a single pizza. That is, we are thinking of 2
4 as 2 times whatever 1

4 is. So we first must
interpret 1

4 as dividing up a single pizza into 4 equal parts. Each part is called a fourth.
Next, to have 2 times 1

4 is to have two fourths. Together, the two fourths make up half
of the one pizza.

Notice that in Exercises 1.3 & 1.4, we end up with the same amount of pizza,
whichever way we interpret the fraction 2

4 . We found that 2
4 is 1

2 .
If you struggled with the previous two exercises, that’s no problem. The following

are more opportunities to practice how to think about fractions.

Exercise 1.5. Suppose we have 2 small pies. How can we interpret the fraction 2
6 in

terms of the 2 pies?

We may think of the 2
6 as dividing 2 pies into 6 equal total parts. When we split

each pie into three pieces, here are the six parts:

1

2

3

4

5

6

Each piece then represents 1
6 of 2 pies, which is written as 2

6 . Hence, 2
6 pies is one

third of a pie. We are thinking of 2/6 as 2÷ 6.

2
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Exercise 1.6. Suppose we have only 1 pie. How can we interpret the fraction 2
6 in

terms of the 1 pie?

Here, instead of thinking of 2
6 as 2 divided by 6, we can think of it as two sixths of a

single pie. Hence, we split the one pie into 6 equal parts and then take 2 of those parts.
Together, the two sixths make up one third of the pie.

Notice that in Exercises 1.5 & 1.6, we end up with the same amount of pie, whichever
way we interpret the fraction 2

6 . Either way, we get 2
6 is 1

3 .
Before moving on, let me point out one more way people read a fraction out loud.

The fraction 2
7 can be read as “2 over 7.” So then, the fraction 2

7 can be read as “two
sevenths,” “two divided by seven,” or “two over seven.”

1.1 Adding fractions

Let’s begin this section with how to add fractions that already have the same denomi-

nator. For instance
2

7
+

3

7
=

5

7
. As another example,

1

9
+

4

9
=

5

9
. The rule for adding

fractions with the same denominator is that you only add their numerators and leave
the denominator the same. If you already learned how to multiply fractions, then you
may remember that when you multiply them, you multiply straight across in both the
numerator and denominator.

?

Question 1.7. When we add
2

7
and

3

7
, why is it that we get

2

7
+

3

7
=

5

7
,

and why is
2

7
+

3

7
not equal to

5

14
? In other words, why does adding fractions

work the way it does? Why don’t we add straight across for both the numerators
and denominators?

To understand this, let’s answer the following questions:

2 apples + 3 apples = what?

2 bricks + 3 bricks = what?

2 thing-a-ma-jigs + 3 thing-a-ma-jigs = what?

Yes, the answers are 5 apples, 5 bricks, and 5 thing-a-ma-jigs. What’s a thing-a-ma-jig?
Well, it actually doesn’t matter what it is, because regardless of what it is, the answer
to the last question is still 5 of them.

So, answer the following question next: (You don’t have to know what a “seventh”
is to answer the question, just as you don’t need to know what a “thing-a-ma-jig” is.)

2 sevenths + 3 sevenths = what?

Yes, we get 5 sevenths. Going back to the previous questions, notice that 2 apples plus
3 apples is not 5 apple pies. Similarly, 2 bricks plus 3 bricks isn’t 5 brick walls. And
so similarly, 2 sevenths plus 3 sevenths isn’t 5 fourteenths. By the way, though it isn’t
needed to answer the above question, let’s review:

Exercise 1.8. What does it mean to have a seventh?

3



Chapter 2

Pre-algebra

Progress comes slowly but steadily if you are patient and prepare diligently.

–John Wooden, greatest basketball coach of all time

2.1 What is a variable?

We often work with variables such as x or y, but what is a variable in the first place?
It turns out that a variable is very similar to a pronoun: he, she, it, they. How can you
tell what the word “she” refers to? Only by context. Similarly, you can only understand
what the word “it” refers to by context, and the same goes for all the pronouns. Variables
are similar. You can only know what a variable refers to by its context. Also, just as a
pronoun is a name for a person (he/she) or several people (they/them), a variable also
can be a name for a single number or for several numbers.

One di↵erence between variables and pronouns though is that whenever you hear
the word “she” or “they” in a sentence, you usually know who it is referring to (or at
least a rough idea). With a variable, it is often more di�cult to figure out what it is
referring to. The key to remember is that when you don’t know what a variable stands
for, it is simply a name for a number (or multiple numbers) that you don’t yet know.

A consequence of the fact that a variable is just a name for a number you don’t
know is that the things you can do with numbers are precisely what you can do with a
variable, and how numbers are manipulated is how variables are manipulated.

! Key Fact 2.1. A variable is just a name for a number (or multiple numbers).

So what does 2x mean? It’s just 2 times x. So if x happens to be 10, then 2x is 20.
If instead x is 7, then 2x is 14.

Exercise 2.2. If x is 9, then what is 2x?

Remember that you should attempt every problem labeled Exercise or Motivation
before reading the answer that follows. To figure this out, all you have to do is multiply
x (which is 9) by 2, and so 2 · 9 = 18.

Let’s get back to what 2x means in general. If there is not enough information to
know what x stands for, then all we can say is 2x is twice whatever x is. We could also
write it as x+ x, if we felt like doing so.

? Question 2.3. Why is it the case that 3x+ 2 6= 5x?

17
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To answer this question, let’s first ask what 3x+2 means. Well, 3x+2 means to take
whatever x is, multiply it by 3, and then add 2 to that product. To understand what
3x+ 2 means, we have to recognize that x can be any number. Let’s see what happens
if x happened to be 100. Then 3x + 2 = 300 + 2 = 302, but notice that 5x = 500. So
in this example, 3x+ 2 6= 5x. Let’s try another example. What if x = 50, then what is
3x+ 2? It would be 152, unlike the 250 that 5x would be. So again, 3x+ 2 6= 5x.

What 3x is, is three x’s, and what 2 is, is two ones. The variable x very well might
not be 1; in this case, three x’s and two 1’s doesn’t give you five x’s, and so that’s the
essential reason why in general 3x+2 6= 5x. Now, if we had a particular number called
x for which it is the case that 3x+ 2 = 5x, then x would have to be 1. But unless you
know that x is 1, then x might be a hundred (or fifty or a thousand).

Let me repeat this. The expression 3x + 2 is three x’s plus two ones. If x were a
hundred, then 3x + 2 means three hundreds plus two ones (i.e., 302), which is not five
hundreds (i.e., 5x). Similarly, in 3x + 2, if x happened to be a thousand, then 3x + 2
means three thousands plus two ones (i.e., 3002), which is not five thousands (i.e., 5x).
So whether x is 100 or 1000, we have that three x’s plus two ones isn’t five x’s.

2.2 Order of operations

To begin, let’s state what the order of operations is:

1. First, do what is inside parentheses.

2. Then handle exponents.

3. Then perform all multiplications and divisions (left to right).

4. Then perform all additions and subtractions (left to right).

As stated, for addition and subtraction, if you are adding and subtracting multiple
values in a row, the order is to do them left to right. So given

10� 2 + 4,

we first compute 10� 2 as 8 and then add 4 to get 12. It is a mistake to first add 2 and
4 and then write 10� 6, which is 4 (a di↵erent answer).

If you have no subtractions and only have additions instead, then a very nice property
of addition is that the order in which you add does not a↵ect the final result. So starting
with

1 + 2 + 3 + 4,

we can first add the 1 and 2 and then write 3+ 3+4 and then write 6+ 4 and end with
10. However, we could also add right to left instead to get 1 + 2+ 7 and then 1+ 9 and
end up with 10 again. Also, to add 1+ 2+ 3+ 4, we could instead add the 1 and 4 first
to get 5 and also add the 2 and 3 to get 5. Then, we compute 5 + 5 to get 10 again.

? Question 2.4. Why are the order of operations what they are? Why do we
multiply before adding? Why do we do exponents before multiplying?

The vast majority of the rules covered in this book are not arbitrary. Those rules
couldn’t really by anything other than what they are if we want them to still make
sense. It turns out though that there are some rules in math that actually are somewhat
arbitrary, and so it is helpful to know when they are arbitrary. The order of operations
turns out to be like the arbitrariness of language. Why is the English word for a book

18
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“book” rather than “libro”? Well, there are historical reasons for it, but words are
somewhat arbitrary symbols that could easily be something else. Everyone who speaks
English though should agree that a “book” is a book and not say, a “dog.” In order
to communicate at all, we have to agree on what our symbols mean, and this is also
definitely true in math. The order of operations is just one of those things that everyone
has to agree on so that we can communicate. So, in the following expression, we do the
exponent first, and then the multiplication, and then the addition:

5 · 24 + 10.

The order of operations could have been di↵erent, if everyone agreed to di↵erent rules,
but people haven’t done that.

In 2x+4, we are supposed to multiply the 2 and x first, and then add 4, but what if
what you really wanted to convey is that you should add x and 4 first and then multiply
by 2? Because that is one thing you might want to convey, there must be a way of
specifying to do things in a di↵erent order than multiply first and then add. That’s
what parentheses are for. The symbols 2(x + 4) mean to add x and 4 first, and then
multiply that sum by 2.

Similarly, recall again that the expression 5 ·24+10 means by the order of operations
to do the exponent 4 first, (and get 24 = 16), and then you multiply 5 and 16 to get
80. After that, you add 80 and 10 to get 90. However, what if you really did want to
multiply the 5 and 2 first? There has to be some way of conveying that, and there is,
by using parentheses: The expression (5 · 2)4 +10 means to first multiply 5 and 2 to get
10, and then you raise that to the 4th power to get 10,000, and then you add 10 to get
10,010, which is very di↵erent from the 90 we got earlier.

To communicate e↵ectively, two people have to understand each other’s language (or
speak through an interpreter). The order of operations is just a way of ensuring that
everyone agrees on what our language of mathematics means.

2.2.1 An advanced but important note

Given an expression, if you modify the order of operations to something equivalent, and
if the modified order is guaranteed to yield the same answer, then the exact order of
operations may be thought of as more of a suggestion than a requirement.

Let me do an example explaining this claim. Recall that when we computed 5·24+10
and when we followed the order of operations, we found it to be equal to 90. However,
if we really did not want to compute all of 24 first (because multiplying 5 and 16 is
harder to do in your head), then we can note that the number 24 is the same as 2 · 23.
To evaluate 5 · 24 + 10, if we really wanted to, we could actually first change it to

5 · 2 · 23 + 10.

Then we can compute 5 · 2 and 23 in the same step and write

10 · 8 + 10.

Then we get 80 + 10 and finally 90. This is the same answer as before. Note that when
we multiplied 5 and 2 in the same step as when we computed 23, we were technically
not following the order of operations, but this modified order was equivalent.

Having said all this, if you struggle with the order of operations, then I recommend
you be more strict in following it.
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2.3 Equations and expressions

Let’s begin with an important question.

? Question 2.5. What are the things you can do with a variable?

The answer depends on whether your variable, say x, appears in an equation, such
as 2x � 5 = 11, or whether there is no equals symbol. If there is no equals symbol,
then all you have is something called an expression, such as 2x� 5. Other examples of
expressions are 118 or 87 ·91+10 or 5x or 12x2 or x

2 or 5x3+⇡x or even (x�1)(x+5). In
general, an expression is just something that represents a number (or several numbers)
and that does not have an equals symbol in it. This is important enough to highlight:

! Key Fact 2.6. An expression is something that represents a number (and so is
not an equation).

Occasionally, an expression will represent more than one number, such as ±5, which
means positive or negative 5, but usually, an expression is just one number.

An equation, on the other hand, is formed by putting an equals symbol between two
expressions. So if we put an “=” between the expression 2x� 5 and the expression 11,
then we get the equation 2x� 5 = 11.

If you have an expression all by itself (and so not as part of an equation), then what
can you do with the expression? Well, the only things you can do are the things that
don’t change the value of the number(s) that the expression represents. For instance, if
you had the expression 4x+ 10, then if you wanted, you could rewrite it as 10 + 4x, or
as 2x+ 2x+ 10, or as x+ 3x+ 8 + 2, or as 4x+ 10 + 0, or 4x+ 12� 2, etc.

Let’s say we have an expression, such as 3, which for the sake of concreteness repre-
sents how many siblings I (the author) have. You could write that as 3 · 1, or 3 + 0, or
0 + 3, or 1 + 2, or 2 + 1, or 1 + 1 + 1. What you cannot do is arbitrarily multiply that
value by 2, to get 6. This is because I don’t have six siblings. I have 3 of them (not
counting brothers-in-law and sisters-in-law, which maybe should count, since they’re
great). But at the end of the day, you can’t just change a 3 into a 6, since they mean
di↵erent things.

Of course, your parents may or may not be able to double the number of siblings
you have, but you yourself have no control over it (besides getting married and gaining
in-laws). Suppose you have an expression only (and no equation). For example, let’s
say you have a 3, then you are not permitted to multiply it by 2, because you’d then be
changing what it represents. You also can’t add 10 to it (because 13 isn’t 3), nor could
you square 3, because 9 isn’t 3. When you have an expression, the name of the game
is to leave its value unchanged. You may change the way it looks (such as writing 3 as
2+1 or as 10 � 7), but you cannot change its value. Of course, if you really wanted to
change the value of an expression by say adding 1 to it, then you are free to do so, but
just recognize that the new expression simply represents something di↵erent than the
earlier expression. For example, if an expression represents how much money you have,
then that is a value that changes as you make money, spend money, and donate money.

? Question 2.7. What can you do with an equation?

Let me begin with the punch line: You can do pretty much anything to an equation
as long as you make sure that after each step, you still have an equality. Let’s break
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Chapter 3

Arithmetic

Technologies come and technologies go, but insight is forever.
–Michael Nielsen, quantum physicist

This chapter uses some of the concepts explained in the pre-algebra chapter. It turns
out that knowing a little bit of algebra is useful in understanding arithmetic better.

3.1 How numbers are represented

This section lays the foundation needed to understand how we use numbers. Later
in this chapter, we will discuss how multi-digit numbers are multiplied, namely, why
the method we learn to multiply actually works. To do that though, we first must
understand how we represent numbers.

Humans in the 21st century represent numbers in what is called the decimal system.
We use 10 di↵erent digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

! Key Fact 3.1. In the decimal system, if a number has multiple digits in it, the
position of a digit a↵ects how much that digit represents.

For example, consider the number 323, or spelled out: three hundred twenty-three.
The first “3” represents three hundreds, and the last “3” represents three ones. Having
three hundreds is very di↵erent from having three ones. So in this number, the two 3’s
are counting di↵erent things: hundreds or ones. Also, the 2 in 323 is counting 2 tens.

In the decimal system, a digit might be counting ones, tens, hundreds, thousands,
ten thousands, hundred thousands, millions, or even larger powers of 10. This chapter
assumes you can already read numbers up to a few billion, but as a reminder, a million
is a thousand thousands, namely 1,000 · 1,000, which is 1,000,000 or 106. Also, a billion
is a thousand millions, or 1,000,000,000 or 109.

As another example, consider the number 7,654,321. Here, the 7 is counting millions
(a million being 106); the 6 is counting hundred thousands (or 100 · 1000 = 105); the 5
is counting ten thousands (or 10 · 1000 = 104); the 4 is counting thousands (or 103); the
3 is counting hundreds (or 102); the 2 is counting tens (or 101); and the 1 is counting
ones (or 100). On that note, if you aren’t sure why we have the rule that 100 = 1, then
you are highly encouraged to read Section 2.5 from the pre-algebra chapter.

Exercise 3.2. For each digit in the following eight-digit number, say what power of 10
the digit is counting:

12,345,678
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Chapter 4

Algebra

Wise people store up knowledge. . .

–King Solomon, Proverbs 10:14 (NASB)

Is it possible to thrive in this world without being able to walk? This question might
appear to have nothing to do with algebra, but I will explain the connection. Let me
start out by saying that yes, there are adults who cannot walk and yet are still thriving.
Though not being able to walk is considered a disability, some people without legs (or
with legs that don’t work) have made the most of their situation. It must take incredible
fortitude to be joyful without the ability to walk, but there are people who do exactly
that.

Have you heard of Joni Eareckson Tada? She is a woman who, at the age of 17,
became a quadriplegic. Though she is paralyzed from the shoulders down, she learned
how to paint by holding a paintbrush in her mouth. She has also authored numerous
books and is very active. Though her life is di�cult (and includes chronic pain), she
presses on.

Leaving seriousness for a moment, what if there was a sassy infant who could talk
but hadn’t yet learned to walk. He might argue with his parents that learning to walk
is di�cult, and he’d be right about that. He then might go on to say that at least in the
United States, where accessibility is valued, people have worked hard to make things
accessible to those in wheelchairs. There are elevators and ramps. Why learn to walk
when you can still get around on wheels? Further, there are lots of helpful people who
can push you, and some strong enough to carry you. Is learning to walk all that useful
when you can still get around without walking? Learning to walk is just too di�cult to
be worth the hassle.

The hypothetical situation in the previous paragraph is absurd, but to a mathemati-
cian, algebra is like walking. Actually, for most people who have worked in any applied
field of science or engineering, algebra might seem to be like knowing how to walk. (One
di↵erence, though, is that people usually learn to walk by the age of two, whereas people
often learn algebra in middle school or high school.) To someone who has gone far in
math, the two skills of (a) knowing how to walk and (b) knowing algebra are analogous
skills. Just as walking is normally useful everywhere, so is algebra. Some people object
to the usefulness of algebra by arguing that many people can get by just fine without
it. Such people are correct that some professions use very little math. As for those who
do need math, often a computer can do all the math for you. So what’s the point in
learning it? After all, it’s di�cult to learn, just as learning to walk is di�cult!

My claim, then, is that you should learn algebra because it really is useful and
because many professions require you to learn a reasonable amount of math in college.
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Do you want to severely limit your options of what career you work in? I hope not.
Even if you might know now what you want to do for an occupation, life happens and
things change.

Sometimes, I, the author, hear people tell me that they gave up on their dream
profession because the math required in college in their degree program was too di�cult
for them. This makes me sad. True, math is di�cult to learn, but with hard work
and guidance, you can make it through. Math doesn’t have to be an unsurmountable
obstacle. My hope is that this book provides some of that needed guidance, but you
will still have to work hard. Okay, let’s get back to doing some math.

As with almost the entirety of this book, I am focusing on why the rules of math
have to be what they are. I mostly ignore applications. Someday, I might write a math
book whose purpose is to show how useful math is by showing how it is used everywhere.
God willing, I’d love to write such a book, but this is not that book.

4.1 Background

This chapter is not the first chapter in this book about algebra. Some of the funda-
mentals of algebra are included in the chapter called “Pre-algebra,” and you should feel
welcome to spend some time in that chapter. Are you completely comfortable with what
a variable is? I explain variables in the pre-algebra chapter. Do you understand negative
exponents and fractional exponents and why 20 = 1? That also is in the pre-algebra
chapter. In it, I also introduce the coordinate plane and how to graph lines. You are
encouraged to spend some time in the pre-algebra chapter if you haven’t yet.

4.2 Square roots, cube roots, and exponents being
fractions like 1/2 or 1/3

Let’s first cover square roots.

Motivation 4.1. What positive number times itself equals 100? And what positive
number times itself equals the number 36?

Be sure to attempt each Motivation and Exercise before reading the answer that
follows. Allow me to encourage you to read the preface if you haven’t yet. The answers
to this question are ten and six. What we have done is compute the square root of 100
and the square root of 36, which we write as

p
100 and

p
36 respectively.

The heart of the meaning of
p
100 = 10 is that 10 times itself, i.e., 102, equals what’s

on the inside of the square root: 100. Similarly, the heart of the meaning of
p
36 = 6 is

that 6 times itself, i.e., 62, equals what’s on the inside of the square root: 36.
As a couple other examples, we have that

p
16 = 4 because 42 = 16. Also,

p
49 = 7

because 72 = 49.

Exercise 4.2. Compute the following:
p
4,

p
9, and

p
81.

Hopefully you did the above exercise before continuing. We get that the answers are
two, three, and nine respectively.

Recall that Chapter 3 explained why a negative number times a negative number is
positive, and now, we will use that rule.

Motivation 4.3. What is �10 times itself? What is �6 times itself?

What we get are these numbers: positive one hundred and positive thirty-six respec-
tively. So if we really really wanted to, we could say that �10 is a square root of 100
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because �10 times itself is 100, and similarly, if we really wanted to, we could say that
�6 is a square root of 36.

In other words, when computing
p
36, and so when we try to find some number

that when multiplied by itself gives 36, then we perhaps have a choice in picking either
positive or negative 6. In order to simplify our life and to have a common language
to communicate with, whenever someone writes

p
36, we agree that it means positive 6

rather than maybe �6. If we really want �6, then we can simply write �
p
36, and if

we want to speak of both �6 and positive 6, then we can write ±
p
36, or just ±6.

That brings us to the meaning of
p
x. The square root of x, i.e., the number

p
x, is

a number that isn’t negative and that when multiplied by itself equals x.

So
p
9 = 3 because 32 = 9 and also 3 � 0. Similarly,

p
64 = 8 because 82 = 64 and

8 � 0.

We have that
p
x = blah means blah2 = x and that blah � 0.

? Question 4.4. What does (
p
x)2 equal?

You very well might be able to answer that question before reading on. Recall thatp
x is a number (that isn’t negative) such that if you multiply it by itself, you get x. So

if we square
p
x, i.e., if we multiply

p
x by itself, what should we get? We should get

the number x. So the answer to the previous question is x.

If you were able to follow this section on square roots, then you’re very close to also
understanding cube roots. I will be much briefer on explaining cube roots.

The cube root of 8 is written 3
p
8 (and is read as “the cube root of 8”). We have

that 3
p
8 is 2 because 2 cubed is 8. Similarly, 3

p
125 = 5 because 53 = 125.

The meaning of 3
p
x is that it equals a number which, when multiplied by itself 3

times, gives x. In other words, if we cube the number 3
p
x, then we get the number on

the inside of the cube root: the number x.

Exercise 4.5. Compute the following numbers: 3
p
27, 3

p
1000, 3

p
�125, and 3

p
�1.

What we get are the numbers three, ten, negative five, and negative one respectively,
because when you cube the numbers three, ten, negative five, and negative one, you get
the numbers on the inside of the cube root: 33 = 27, 103 = 1000, (�5)3 = �125, and
(�1)3 = �1.

So far in this section, I have only explained how to take square roots and cube roots
(at least for examples that work out nicely). There is a rule I want to review briefly
before I give a reason in the next subsection for this rule. The rule is that raising a
number x to the 1/2 power is the same as taking the square root of x. In other words, we
say that x1/2 =

p
x. Similarly, the rule for cube roots is that x1/3 = 3

p
x. For instance,

1001/2 = 10 and 1251/3 = 5.

It turns out that we can also take the square root (or cube root) of numbers and
get a number with a decimal that goes on forever. For instance, using a computer or
calculator, we can see that

p
2 = 1.41421356 . . ., a number whose decimal expansion

goes on forever (and with no repeating pattern). Here, I wrote down the first eight
digits after the decimal point. If we stop writing digits after eight digits (or fifty digits
or a million digits), then what we have is an approximation of

p
2. If we square the

number
p
2 itself, what we get is 2 exactly, but if we square the approximation 1.414,

then we get a number that is about 1.9994, which is pretty close to 2. If we instead find
(1.41421356)2, then we would get a number even closer to 2. As another example of a
square root that has an infinite decimal expansion, we have

p
10 = 3.1622776 . . .
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do is omitted from the sample. Indeed, most pages are left out. However, since

the algebra chapter is so long, and since it is rare to see clear explanations of

logarithms, I have included the first part of my explanation of logarithms.

You are encouraged to skip the top part of the next page (which picks up in

the middle of a thought).
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The right-hand side is equal to ±
p
b2 � 4ac/

p
4a2, which is ±

p
b2 � 4ac/(2a), and so

we may use this and subtract b/(2a) from both sides to get

x = � b

2a
±

p
b2 � 4ac

2a
,

which may be rewritten as

x =
�b±

p
b2 � 4ac

2a
.

We have thus solved for x in ax2+bx+c = 0 and so have derived the quadratic formula.

4.13 Logarithms

Apply your heart to instruction and your ear to words of knowledge.

–Solomon, King of Israel, (ca. 950 B.C.) Proverbs 23:12 (ESV)

This section answers the following:

? Question 4.137. What is a logarithm?

One key to understanding logarithms is to understand exponents well, because log-
arithms are all about exponents. In fact, I will state something even stronger:

! Key Fact 4.138. The logarithm of a number is its exponent.

This reality can be misunderstood, but I will spend some time here and explain what
I mean. With proper guidance, logarithms do not have to be confusing.

Motivation 4.139. What are the exponents of the following numbers? (a) 103, (b) 106,
(c) 104, (d) 10, (e) 1

10 , (f)
p
10.

One tricky thing about this question is that to answer it, you have to add an as-
sumption to it. Indeed, I intended that you simply assume that I meant each of these
numbers is 10 raised to some exponent, and it is that exponent that I was referring to.
We say that 10 is the base. So then, with 10 as the base, the exponents are (a) three,
(b) six, (c) four, (d) one. Next, (e) is slightly harder, but a tenth is ten raised to the
negative one, and so negative one is the exponent (if 10 is the base). If you are unsure
why raising 10 to the �1 yields 1/10, then I highly recommend that you read Section 2.5
from the pre-algebra chapter. For (f), recall from when we covered fractional exponents
that

p
10 equals 10 raised to the one half power, and so the answer to (f) is 1/2 (where

again, we assume that we are writing the numbers as 10 raised to some power).
What you have just done is calculate the logarithms of those six numbers. We may

write log(103) = 3 because the exponent of 103 is 3. We may also write that log(106) = 6
because the exponent of 106 is 6. Similarly, we have log(102) = 2, log(10) = 1, log( 1

10 ) =

�1, and log(
p
10) = 1/2. Also, let me note here that the expression log(103) is not log

“times” 103. Rather, log(103) means that we are plugging in the value of 103 into a
function called log.

Motivation 4.140. If we have an exponent in a number, is 10 always the base? Or is
it the case that we can raise other numbers to some exponent?
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Of course, we are free to write 24 or 32 or 1002, and so the answer is that when we
have an exponent, the base very well might be something other than 10. Let’s continue
this thought in the next motivation:

Motivation 4.141. If the logarithm of a number is just its exponent, then is the loga-
rithm of 100 the number 1? (After all, 100 = 1001.) Or is it the case that the logarithm
of 100 is 2? (After all, 100 = 102.)

It turns out that the answer to this question is that it depends on what base you’re
using for your logarithm! If you are using base 100, then the logarithm of 100 is 1 since
100 = 1001, but if you are using base 10, then the logarithm of 100 is 2, since 100 = 102.
In that same sense, we may say that the exponent of 100 is 1, since 100 = 1001, or we
may say that the exponent of 100 is 2 when we are using 10 as the base.

The way we specify which base a logarithm is relative to is to write it as a subscript
of the log. So we write log10 100 = 2 and say “log base 10 of 100 equals 2.” Also, we
write log100 100 = 1 and say “log base 100 of 100 equals 1.”

Exercise 4.142. Compute the following logarithms: (a) log10(10
7), (b) log10(1,000),

(c) log10(1,000,000), (d) log10(1/1000) (e) log100(100
2), (f) log100(100

5), (g) log100 10
(h) log100(1,000,000). Note that half-way through, I switched the base from 10 to 100.

To answer this, remember that a logarithm is just telling us what the exponent is,
where the assumed base is written as the subscript b in logb(. . .). The answers are
(a) seven, (b) three, since 1,000 = 103, (c) six, (d) negative three, since 1/1000 = 10�3

(e) two, (f) five, (g) 1/2, since 1001/2 =
p
100 = 10, (h) three, since 1,000,000 = 1003.

Besides logarithms with 10 as the base, there really are only two other bases that are
very commonly used. The number 2 is often used as a base of a logarithm, especially in
computer science. Also, there is an irrational number denoted e which is often the base
of a logarithm. The number e is approximately 2.71828, but to remember it, you can just
think of it as a number that is approximately 2.7 (or simplifying further, some number
between 2 and 3). It turns out that e is a very important number, but its importance is
only evident if you study calculus. When e is used as the base of a logarithm, instead
of writing loge(. . .), people often write ln(. . .), which stands for the “natural logarithm”
(with the order of the letters reversed). Again, exactly why the logarithm base e is
somehow “natural” is not evident unless you take calculus.

Unfortunately, when log(. . .) is written without any subscript b to the log, it is
actually ambiguous. In advanced math, some mathematicians will sometimes write the
natural logarithm as log(. . .) (and so mean base e). Computer scientists will instead
sometimes mean that log(. . .) is log2(. . .). It appears to be the case that for most of the
rest of the world, when people write log(. . .), they mean log10(. . .).

Before the next exercise, let me do a quick example and state that log2(8) = 3, since
8 = 23. In other words, the exponent of 8 is 3 when the base is 2.

Exercise 4.143. Compute the following logarithms: (a) log2(2
8), (b) log2(2

10),
(c) log2(4), (d) log2(2), (e) log2(

3
p
2), (f) log2(1), (g) log2(1/8), (h) log2(32).

To figure out what log2(blah) is, what we need to do is just figure out what the
exponent of blah is when we write it as 2 to the something. For (a) and (b), the answer
is already written for us. We have (a) eight, (b) ten, (c) two, since 4 = 22, (d) 1, since
2 = 21, (e) a third, since 3

p
2 = 21/3, (f) 0, since 1 = 20 (and if you are not sure why

20 = 1, then I highly recommend reading Section 2.5 from the pre-algebra chapter).
Next, (g) negative three, since 1/8 = 2�3, and finally (h) five, since 32 = 25.

So far, all the numbers we have taken a logarithm of have been numbers we can
figure out without using a calculator. However, it is also possible to take the logarithm
of numbers that don’t work out so nicely. For example, we may compute log10(98), but
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the easiest way of doing so is to use a calculator. It turns out that log10(98) ⇡ 1.99, but
the exact decimal goes on forever without repeating (and so log10(98) is an irrational
number). The meaning of the statement that “log10(98) approximately equals 1.99” is
that 98 ⇡ 101.99. It should make sense that the logarithm base 10 of 98 is a little less
than 2, since 98 is a little less than 102.

Technically speaking, we may do logarithms for any base b such that b > 0 and b 6= 1.

Motivation 4.144. Why can’t we have 1 as the base of a logarithm? Why can’t we
compute log1(3)?

The reason why 1 cannot be the base of a logarithm is that no matter what exponent
we raise 1 to, we get 1. For instance, 12 = 1, and 1200 = 1. So if we want to ask what
exponent we can raise 1 to so that we get 3, the answer is that there is no such exponent.

It is a little less obvious why we cannot use a negative number as the base of a
logarithm. On that note, we cannot have �2 as a base of a logarithm. For instance,
log�2(8) makes no sense because there is no real number k such that (�2)k = 8.

We are ready to state a definition of the logarithm with base b:

! Key Fact 4.145. Let b > 0 with b 6= 1. The function logb(x) just tells us what
exponent of b gives x. In other symbols, logb(x) equals the number y such that
by = x.

So far, we have been in the process of answering the following question:

? Question 4.146. What is the meaning of logb(x)? (It is read as “log base b of
x.”)

Our main answer from earlier in this section is that a logarithm is just the exponent
of the number that is being plugged into the logarithm. It turns out though that there
is one other perspective that is important for understanding logarithms. This key is to
know that a logarithm is just the opposite (i.e., inverse) of an exponential function. My
assumption in the rest of this section is that you have read the entirety of the section
up to this point.

Before moving on to our second view of what logarithms are, let’s briefly do one
more exercise.

Exercise 4.147. Without a calculator, compute the following logarithms: (a) log3(1/9),
(b) log10(1,000,000,000), (c) log7(49), (d) log8(1), (e) log3(81).

We get (a) negative two, since 1/9 = 3�2, (b) nine, since there are nine zeros, (c) two,
since 72 = 49, (d) zero, since 80 = 1, (e) four, since 81 = 9 · 9 = 32 · 32 = 34.

4.13.1 The logarithm as the inverse of the exponential function

My aim until now is to help you be thoroughly comfortable with thinking of logarithms
as exponents. The logarithm of a number is just the exponent of that number (relative to
some base). Now, we are ready to cover the next primary interpretation of logarithms as
functions. For the moment, we will restrict ourselves to using 2 as a base. The following
is the fact we will focus on next.

! Key Fact 4.148. The function f(x) = log2(x) is the inverse of the exponential
function g(x) = 2x. (The term “inverse” is defined below.)
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The inverse of a function is a function that swaps the input and output. In other
words, the inverse of a function f with f(x) = y is a function g such that g(y) = x. See
also Section 10.2.1 from the precalculus chapter to read more on inverse functions.

Key Fact 4.148 is one possibility of how we can define the logarithm for base 2
(assuming we already had defined the exponential function g(x) = 2x). It would be
good to understand the meaning of the fact that the log base 2 function is the inverse of
the exponential function with base 2, and so consider the following table of exponents
and powers of 2:

exponents �3 �2 �1 0 1 2 3 4 5
powers 1/8 1/4 1/2 1 2 4 8 16 32

The exponential function g(x) = 2x takes as input any exponent x. The output of this
exponential function (that I am calling g), when given an input x, is the power of 2
written 2x:

the function gx 2x

The logarithm (with base 2) does the exact opposite thing as g. In fact, we can write
this:

the function log22x x

which can also be written as log2(2
x) = x, which says that the exponent of 2x (relative

to base 2) is x. Going back to the above table, we may replace 2x with y. The logarithm
takes as input any y that is a power of 2, and then the output is the exponent x for
which 2x = y.

One thing that the above table does not illustrate is that the allowed exponents x
in 2x include any real number (not just integers).

So then, the exponential function g(x) = 2x begins with any exponent x and
transforms it into a power of 2. Complementary to this is the logarithm function
f(y) = log2(y) which begins with any power of 2 (written as y) and transforms it
into the exponent x of 2 for which 2x = y. The logarithm and exponential functions do
the exact opposite thing. Let’s summarize where we’ve been:

! Key Fact 4.149. The exponential function transforms exponents into powers,
and the logarithm transforms powers into exponents.

So then, the exponential and logarithm functions are inverses of each other. This
means that if you start with an input and apply one of the functions and then apply the
other function, you end up where you started (i.e., with the input that you started with).
Let’s see what this looks like. Start with the input x. We will first apply g(x) = 2x and
then we will take the output of g and put it into the log2 function. That looks like this:

the function gx 2x the function log2 x

Notice that we end up with x, which is what we started from. This can be written out
algebraically as log2(g(x)) = x. In other symbols, since g(x) = 2x, the figure shows this:

log2(2
x) = x
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Geometry

There is no royal road to geometry.

–Euclid (ca. 300 B.C.)

5.1 The Pythagorean Theorem

Let’s begin with the Pythagorean Theorem, which we state in Theorem 5.1. Recall that
a right triangle is a triangle with a 90° angle in it (which is called a right angle), and
the hypotenuse is the longest side of a right triangle, the side opposite the right angle.

Theorem 5.1 (The Pythagorean Theorem). Suppose a right triangle has a hypotenuse
of length c and the two other sides of length a and b. Then

a2 + b2 = c2.

? Question 5.2. How can we know with absolute certainty that the Pythagorean
Theorem is true?

Consider the figure below, which is a square with sides of length a + b containing a
smaller, tilted square with sides of length c inside of it.

a b

a

b

b a

b

a

c

c

c

c
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Challenge 5.3. Use the figure above to come up with a proof of Theorem 5.1. Hint:
Compute the area of the large square in two ways.

Let A be the area of the large square. Then A = (a+ b)2. Distributing shows

A = (a+ b)2 = a2 + 2ab+ b2.

But A is also the sum of the areas of the four triangles and the tilted square. (Recall
that the area of a triangle is 1/2 base times height.) Hence,

A = 4 · 1
2
ab+ c2 = 2ab+ c2.

We may then equate the two di↵erent expressions for A to get

a2 + 2ab+ b2 = 2ab+ c2,

and then we are done by subtracting 2ab from both sides.

? Question 5.4. Does the above proof explain the Pythagorean Theorem fully?

I hope readers like the proof just given, but sometimes, one proof might give more
insight than another proof. Also, why should we only give one proof when we can give
two? This next proof is only a slight variation of the previous one, but you might like
it even more.

a b

b

a

ba

a

b
c

a

b

a c

b

Notice that this large square has the same shape as the large square on the previous
page, since they both are squares with sides of length a + b. Notice what is left if you
subtract the areas of the four triangles: In the figure on this page, you’re left with the
areas of the two smaller squares: a2+ b2, but on the previous page, when you take away
the four triangles, you’re left with c2. As a result, we have

a2 + b2 = c2.

One thing I really like about this second proof is that it shows how you can rearrange
geometrical shapes to show that the theorem is true. Note, however, the similarity with
the first proof, where we also had to subtract the areas of four triangles 4 · 1

2ab, which
equals 2ab, from two sides of an equation.
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5.2 Why do the angles in a triangle add to 180�?

This section focuses on the question in the section title, which is restated here:

? Question 5.5. Why is the sum of the angles in a triangle 180�?

To explain this, we will take one result from geometry for granted.

↵

↵ �
�

L

This figure consists of two parallel lines, with another line (line L) passing through them.
The two angles labeled ↵ (the Greek letter “alpha”) are equal, and the two angles labeled
� (the Greek letter “beta”) are equal. The corresponding angles are equal because of the
two parallel lines. We will take this result for granted in part because it looks intuitive,
but in a geometry class, you would actually prove this result from simpler ones.

With that said, consider the following triangle:

a c

b

We will show that the angles of this triangle add to 180�. What we will do is extend
the line segment ac into a full horizontal line. We will also draw a line through b that
is parallel to ac:

a c

b

↵

↵

Because we have parallel lines, the two angles labeled ↵ are equal.

a c

b

�

�

Because we have parallel lines, the two angles labeled � are equal. Combined, we have
the following figure (with also the labeled angle �, the Greek letter “gamma”):

↵

↵

�

��

Notice that the angles ↵, �, and � together form a straight line. Hence, they sum to
180�. That concludes our proof on the sum of the angles in a triangle.
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5.3 A universally applicable formula about area

For some triangles, it is not di�cult to see why their area is 1
2bh, where b is the length

of the base of the triangle and h is its height. This section goes beyond that, but we
will begin at the beginning.

b

h

To see that this right triangle has area 1
2bh, we need only see that it is half of a

rectangle with width b and height h:

b

h

b

h

(Note that a reason why the rectangle has area bh is given in the section “Multiplication
as repeated addition” in the arithmetic chapter.)

A little bit harder is why the following triangle also has area 1
2bh:

b

h

To see why the same formula works for this triangle too, we can again embed it in a
rectangle with width b and height h:

b

h
A B

What we can notice then is that the triangle with base b and height h can be split
into two right triangles, A and B, that share the dashed side that has a height of h.
Both A and B are half of the rectangle on their side of the dashed line, and so their
total area is half of bh.

? Question 5.6. What if the top of a triangle is not directly above a part of its
base? Why is the area of the triangle still 1

2bh?

Consider the following triangle:

b

hTriangle T :
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Logic

Mathematics is the music of reason.

–James Joseph Sylvester, mathematician

To understand math well, it is necessary to gain a good grasp of logic. In particular,
to write or understand proofs, you must know basic logic. The following question might
enter your mind:

? Question 6.1. What is a proof?

This chapter will answer this question, but to give a short answer, a mathematical
proof is simply a rigorous argument that will convince someone that a certain math-
ematical statement is true. Here, the “someone” referred to in the previous sentence
is anyone who has the necessary background. Examples of proofs will be given in this
chapter. You might ask the following question though:

Motivation 6.2. Doesn’t the rest of this book contain many proofs?

Thinking so would be quite reasonable, but in most cases, it hasn’t been my intention
to write out full proofs of the rules/statements I’ve been showing to be true. My goal has
been to be convincing and not to worry about making the arguments completely rigorous.
(Also, some of the rules I’ve explained are actually definitions, for which it doesn’t make
sense to prove. When I try to convince readers that a certain rule/definition is “correct,”
I mean to simply show why any such rule couldn’t be anything other than what it is,
assuming it is sensible.) Getting back to the topic. . .

? Question 6.3. Why do proofs even matter? Aren’t convincing, non-rigorous
arguments good enough? Why do mathematicians value proof?

Those are fair questions to ask. First, note that what may convince one reader might
not convince someone else who is more skeptical. So for some people, an argument that
isn’t rigorous isn’t convincing. This is partly due to the following phenomenon: Even if
a mathematical statement appears to be true, that doesn’t guarantee it to be true.

Let me give an example. First, let me introduce some notation. The symbols dxe
mean to round x up to the next closest integer larger than x (if x isn’t an integer) and
to leave x alone if x is already an integer. For instance d7.2e = 8, d19.9997e = 20, and
d45e = 45. Similarly, the symbols bxc mean to round x down to the next closest integer
smaller than x (if x isn’t an integer) and to leave x alone if x is already an integer.
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The functions g(x) = dxe and f(x) = bxc are called respectively the ceiling and floor
functions.

Does

⇠
2

21/n � 1

⇡
=

�
2n

ln 2

⌫
for all positive integers n?

You might guess, “Well of course not! Those two formulas look so di↵erent!” But if you
plug in all the positive integers less than a million, you’d find that the formula is always
true!1 The formula is also accurate for all integers up to a billion, or a trillion, or even
seven hundred trillion! It turns out that the smallest integer n for which the formula
isn’t true is n = 777, 451, 915, 729, 368. It’s quite incredible that the formula works for
so long but finally fails.2

As a result, one reason why mathematicians like proofs is to steer clear of error. We
want to be absolutely certain that a result is true.

So does “rigor” in a proof mean you must write out a very long proof? Not neces-
sarily. For instance, you are allowed to use the statements of theorems already proved
without reproving them.

There is another very important reason why mathematicians value proofs; it is in
order to understand something. An air-tight (i.e., rigorous) argument of why a math-
ematical statement is true should give insight as to why it is true. That’s one good
reason why mathematicians often like to have multiple proofs for the same statement.

One final reason I’ll mention why mathematicians value proofs is that it is often the
case that a proof includes some result, technique, or key insight that is useful to help
do other mathematics.

6.1 The basics of logic

6.1.1 Conditional statements

Logic is used to deduce true statements that are consequences of other true statements.
Consequently, it is important to understand the act of one statement implying another.
Central to logic is something called a conditional statement. Suppose A and B are
statements. We call a statement of the following form a conditional statement:

If A, then B.

Conditional statements can also be written as follows:

A =) B.

The previous statement is read as “A implies B.”
Here are some examples of conditional statements (which may or may not all be

true):

1. If it is raining hard outside, then the ground is wet.

2. If you are reading this chapter, then you must be at least 14 years old.

3. If n is an even integer, then n2 is even.

1If you use a computer to do this, then note that you need to make sure that the computer is using
enough precision to represent the numbers accurately enough. Otherwise, it may incorrectly say that
the two formulas aren’t equal, such as for n = 156,339.

2For a reference, see what the eminent mathematician Richard Stanley wrote in an answer to a ques-
tion here: https://mathoverflow.net/questions/15444/examples-of-eventual-counterexamples
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I wager that the first of those statements is true. The second statement may or may not
be true. The third one definitely is true.

There are two important questions to ask about the concept of conditional state-
ments:

? Question 6.4. Under what conditions is a conditional statement true? And how
might you modify a conditional statement to get a related statement?

Let me address the first question first. Suppose I am talking with my nephew
Jeremiah and I tell him, “Jeremiah, if you clean your room today, then tomorrow,
I’ll buy you ice cream.” If I weren’t telling him the truth when I said this, what is the
only way for Jeremiah to prove that my o↵er isn’t true?

First consider that he didn’t clean his room. I probably wouldn’t be buying him ice
cream then. So in that case, could he show that I was lying? No, of course not. The
statement I made to Jeremiah would in this case be “Jeremiah, if you clean your room
today [False], then tomorrow, I’ll buy you ice cream [False].” So then, we cannot say a
statement of the following form is false:

“If h some false statement i, then h some false statement i.”

A conditional statement of this form is thus taken to be true.
Next, perhaps the reason he didn’t clean his room was that he was busy cleaning the

bathroom and kitchen (extra chores, let’s say), and then his parents decided the family
would watch a movie together. And what if then, I decided to buy him ice cream, even
though he didn’t clean his room? Would that show that I was lying? Again, no it
wouldn’t. “Jeremiah, if you clean your room today [False], then tomorrow, I’ll buy you
ice cream [True].” So then, we cannot say a statement of the following form is false:

“If h some false statement i, then h some true statement i.”

A conditional statement of this form is thus also taken to be true.
To summarize the previous two paragraphs, under the condition that Jeremiah did

not clean his room, he couldn’t show that I was lying to him, whether or not I buy him
ice cream. In general, when the condition in a conditional statement (the “if” part, i.e.,
the A in A =) B) happens to be false, the whole conditional statement is considered
true regardless of whether or not B is true.

Of course, if Jeremiah did clean his room, and then I bought him ice cream, then
the statement I made would have been true. We have then that conditional statements
of the following three forms are true:

• If h some false statement i, then h some true statement i.

• If h some false statement i, then h some false statement i.

• If h some true statement i, then h some true statement i.

The first two on the above list might be confusing, and so let me add that we say that the
conditional statement is vacuously true whenever the condition is false (as in the first
two on that list). In that case, you of course cannot conclude anything about whether
or not the conclusion is true, and so the conditional statement would in that case do
you no good in an attempt to try to deduce other conclusions.

What is the only way for Jeremiah to claim that my statement was a lie? Suppose
Jeremiah really did clean his room today. Then of course he could say my o↵er isn’t
true precisely if in that case, I don’t buy him ice cream the next day. A conditional
statement is false when it is of the following form:
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Trigonometry

Do not worry about your di�culties in mathematics; I can assure you that
mine are still greater.

– Albert Einstein

Some people say that trigonometry has a lot to do with triangles and angles. While
I don’t necessarily disagree, I would want to add that trigonometry also has a lot to do
with circles. Trigonometry is very relevant when trying to describe a repeating wave,
such as a musical note or a radio wave or visible light.

Let’s begin with how angles are measured. You might be most familiar with mea-
suring angles with degrees, where a degree is defined as the angle that takes up 1/360
of a circle. Hence, a right angle is 90�. A degree turns out to be a very arbitrary unit
of measurement for angles. Why should our unit of measurement of angles be 1/360
of a circle rather than 1/200 of a circle or 1/100 of a circle? There really is no good
inherent reason for this, but it turns out that there is a unit of measure of angles that
is less arbitrary. This unit of measure of angles, called the radian, appears foreign and
unnatural at first, but it makes things simpler (especially when doing calculus).

7.1 Radians

Let’s first answer the question of what a radian is.

? Question 7.1. How big is a radian?

Suppose we take a circle with a given radius r, and suppose we also have a string
that has length one radius: r. Let’s pick up that string and place it along the edge of
the circle so that we have an arc of the circle of length r. Measuring the angle at the
center of the circle corresponding to that arc, the resulting angle would take up exactly
one radian. This is our definition of what a radian is.

To better understand radians, let’s figure out approximately how many degrees equal
one radian. To do that, first try answering the following question:
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Motivation 7.2. How many radiuses (or radii) does it take to measure the entire cir-
cumference of the circle?

To reword the question in a more familiar way, consider what times the radius equals
the circumference. What we have is that the circumference of a circle C with radius r
is

C = 2⇡r.

If you don’t recall the reason for this, then it would be a good idea to review Section 5.4.1
from the geometry chapter (which is brief).

So then, since C = 2⇡r, what that means is that it takes the length of 2⇡ radiuses
to measure the circumference of a circle. Recall from above that a radian corresponds
to how much of the circle is formed when the arc length is one radius. With that said,
we are ready for the next question.

Motivation 7.3. How many radians does it take to go all the way around the whole
circle (the whole 360�)?

What we get is that it takes 2⇡ radians to go all the way around. Each radian
corresponds to an arc length of one radius. We have then that 2⇡ radians is 360�.

If we want to know what one radian is in degrees, all we have to do is divide both sides
of the equation 2⇡ radians = 360� by 2⇡. We conclude that 1 radian = 360�/(2⇡) ⇡
57.3�. So basically, a radian is a tad less than 60�, which should make sense since 60 is
1/6 of 360 and 2⇡ is a bit more than 6, which implies that a radius r has length a little
less than 1/6 of 2⇡r.

Motivation 7.4. Suppose an angle is two radians. Then what is the corresponding arc
length of that part of a circle?

What we get is that two radians make up an arc of the circle of length 2r, where the
circle has radius r.

Exercise 7.5. If an arc of the circle has length 3.4r, then what angle does that arc
form?

That arc forms 3.4 radians. Notice that we get the number 3.4 by simply dividing
the arc length, namely 3.4r, by r.

Motivation 7.6. Suppose a circle has a radius of 10 inches. If an arc of that circle has
length 51 inches, then what angle does that arc form?

What we get is that the angle is 51 in/10 in = 5.1 radians. All we had to do was
divide the arc length by the length of the radius.

This next point I want to make is a little tricky, but it is something that we shouldn’t
skip.

?
Question 7.7. Although I called the radian a unit of measure of angles, some
people legitimately call a radian “unitless.” What does that mean? And why is it
“unitless”?

A radian is in fact a ratio of two lengths: It is an arc length divided by the length of
the radius. Hence, if we are measuring lengths in inches, the radian “unit” has units of
inches/inches (i.e., inches divided by inches). But since anything (nonzero) divided by
itself equals one, that means that the units cancel. If we were measuring the radius and
arc length in meters, then m/m = 1 too, and so regardless of how we measure lengths,
when we divide two lengths, the units cancel. Any ratio of two numbers having the same
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unit is in fact unitless. So then, a radian can actually be called unitless. Consequently,
instead of writing “2⇡ radians = 360�,” people sometimes write the following equation:

2⇡ = 360�.

Exercise 7.8. Since 2⇡ radians make up the whole circle, then how many radians equals
180�?

Because 180� is half of a circle, the answer is half of 2⇡, which gives ⇡ radians.

Exercise 7.9. How many radians equal a right angle?

A right angle is half of 180�, and so the answer is half of ⇡, which is ⇡/2.

Exercise 7.10. How many radians equal. . . (a) 45�? (b) 30�?

One way of figuring this out is to see that 45� is half of a right angle, and so
45� = (1/2) · ⇡/2 = ⇡/4 (radians). Also, 30� is 1/6 of 180�, and since 180� = ⇡, we get
that 30� = ⇡/6.

The previous two sentences are legitimate ways of answering the previous exercise,
but we would also like to be able to convert other angles into radians that aren’t as nice.
For instance, how many radians is 37�? Because, 2⇡ = 360�, dividing both sides by 2
gives ⇡ = 180�. Next, dividing by either ⇡ or 180� gives the equations

180�

⇡
= 1, and

⇡

180�
= 1.

These fractions can be used to do unit conversions. So then to convert 37� into radians,
just multiply by ⇡

180� , and then the degrees unit would cancel. To get a decimal as an
answer, we find that 37� ⇡ 0.646 (radians).

Exercise 7.11. (a) How many radians is 190�? (b) How many degrees is 10 radians?

For the first, we can just multiply by ⇡
180� to get 3.32, and to illustrate that the

degrees really cancel, I’ll write

190 degrees = 190⇠⇠⇠⇠degrees⇥ ⇡ radians

180⇠⇠⇠⇠degrees
⇡ 3.32 radians.

For the second problem, we can just multiply 10 by 180�

⇡ to get ⇡ 573�, and just to
illustrate that the radians cancel, I’ll write

10 radians = 10⇠⇠⇠⇠radians⇥ 180 degrees

⇡ ⇠⇠⇠⇠radians
⇡ 573 degrees.

7.2 Sine, cosine, tangent – triangle definition

It is common to use the Greek letter theta, written ✓, to represent an angle. When we
define the trigonometric functions using a triangle, we must use a right triangle:

adjacent

opposite
hypotenuse

✓
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Complex numbers: i =
p
�1

The discerning heart seeks knowledge. . .

–Solomon, King of Israel, (ca. 950 B.C.) Proverbs 15:14 (NIV)

8.1 Numbers and the complex plane

We speak of something called “complex numbers,” also known as “imaginary numbers.”
It is an unfortunate reality that some people abuse the notion of “imaginary” numbers
by saying that in math, you can make up whatever you want. This claim, however, is
misguided.

In order to understand complex numbers, we must talk about what we mean in the
first place by “number.” We will spend some time to answer this question:

? Question 8.1. What does the word “number” mean?

When teachers ask questions, they sometimes say that there are no wrong answers.
If we were talking about something that was purely a matter of opinion, then assuming
sincerity, we could say that in that context, there are no wrong answers, just di↵erent
opinions, but Question 8.1 is not like that. It does have wrong answers. Even so, while
there are plenty of wrong answers to this question, there does happen to be more than
one valid answer to what constitutes a “number.”

Let me next say that I dislike the term “complex number,” and I also dislike the
term “imaginary number.” In my opinion, these terms are misleading. Granted, to the
uninitiated, the “number”

p
�1 seems extremely complex and totally made up, but I

hope to convince you that it can be a completely reasonable thing to think about and
work with. Also, it turns out that in real life, so-called “imaginary” numbers turn out
to be really useful (at least for some people, such as electrical engineers).

Allow me to communicate that plenty of numbers you are already comfortable with
are in a sense, actually imaginary. For instance, how long is an (American) football field?
You might answer 100 yards, and that is the “correct” answer, but an actual football
field may really be 100.0001 yards or 99.998 yards (or it actually can di↵er depending on
which part of the field you measure). Here, the number 100 is an idealization of reality
and so in some sense is imaginary. Whenever you measure any quantity on a continuum
(such as length, weight, or temperature), any number we use has only a certain amount
of precision in it. The number used is an approximation of reality (that can even change
slightly with time).
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There are also many numbers that definitely are complex. For instance, the number
8125826056540367283927 is a plain old whole number, but it looks pretty complex to
me. The value i =

p
�1 is much simpler than that complicated whole number.

One possible answer to Question 8.1 is that a number represents a count of how
many of something we have. In this sense, a number is an answer to a question such
as, “How many sisters do you have?” or, “How many marbles are in the sealed jar?”
Answers to questions like these can be a whole number.

Motivation 8.2. Is the concept of “number” restricted only to whole numbers, or in-
stead, are there also numbers that don’t count how many of something we have?

I claim that the answer is that there are lots of numbers that aren’t counting any-
thing. Take for instance 13.4, which is thirteen and four tenths. Is there anyone who has
13.4 sisters (i.e., 13 and four tenths sisters)? No, that’s just absurd. It just isn’t possible
to have 13 and four tenths sisters. So then, there are numbers that say something other
than how many of something we have.

While 1 and 2 and 32 are numbers, of course 13.4 is a number too. It’s just that
having a fractional part means that it is much more appropriate describing how much,
how big, or how long something is. In other words, 13.4 represents a quantity. It doesn’t
count something, but it measures something. You might have 13.4 ounces of chocolate,
or you might have a model rocket that is 13.4 inches tall. So then, our second answer to
Question 8.1 is that a number can measure the quantity of something, such as length,
weight, height, or speed.

Motivation 8.3. How about negative numbers? Are they numbers too?

Yes, they are, and just as the number 13.4 is absurd in some contexts, so also negative
numbers are absurd in some contexts. For instance, if someone told you that their TV
screen is �18 inches wide (negative eighteen inches wide), how would you respond?
Saying your TV is negative eighteen inches wide just doesn’t make any sense at all.

As stated in a previous chapter, negative numbers do make sense in some contexts.
Suppose my nephew has no money saved at all but wants to buy a toy that costs $18.
Suppose that his parents do not give him the toy out of generosity. What they could
do is buy the toy for Jeremiah under the condition that he works to pay it o↵ later.
Jeremiah could then go in debt $18. Hence, if he were asked how much money he had,
he could say that he’s in debt $18, and so has “negative 18 dollars,” where the negative
represents the “direction” of a debt rather than a savings. After he makes $18, he would
pay it to his parents and be at $0.

A negative number accurately represents a debt, but it would be absurd to talk
about a TV having a width of some negative amount. So just as 13.4 is absurd in some
contexts and makes sense in other contexts, so also negative numbers are absurd in some
contexts and make sense in other contexts. Unsurprisingly, the same is true of “complex
numbers.” Again, there are lots of situations in which fractional numbers are absurd,
and there are lots of situations in which negative numbers are absurd. Similarly, there
are lots of situations in which complex numbers are absurd. We should also recognize
that fractional numbers, negative numbers, and complex numbers all have situations in
which they do make sense. This chapter will focus on what complex numbers mean and
when they do make sense.

Let’s then state right at the outset that complex numbers do not represent a quantity.
They represent something di↵erent entirely.

As I stated earlier in this section, in my opinion, the terms “complex numbers”
and “imaginary numbers” both are misleading. The former makes it sound like they’re
complicated, and the latter makes it sound like they are somehow illegitimate. We
can even say something like “i is not a real number,” and we’d be using the technical
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terms correctly. This is somewhat unfortunate. In my opinion, a better name for the
numbers called complex numbers would be “2-dimensional numbers” which we could
abbreviate by saying “2D numbers.” My hope is that as I explain these numbers, my
preference for the term “2D numbers” will become clear. Although I hope to convince
you that i is not overly complicated, I must admit that when you first work with it, the
value i is foreign, and so just like learning a foreign language, it takes time to get used
to it.

Recall that the set of “real” numbers can be represented by a number line:

�3 �2 �1 0 1 2 3

This number line extends in both directions without any end, and each position on the
number line corresponds to one real number. One interpretation then of a real number
is that it represents a position on a line. Let’s note here that a line is a one dimensional
object.

What if we wanted to describe a position in two dimensions instead of one? One
option is to use Cartesian coordinates, and here each point has both an x-coordinate
and a y-coordinate, such as the point (2, 3). The point (2, 3) has an x-coordinate of 2
and a y-coordinate of 3.

�4

�4i

�3

�3i

�2

�2i

�1

�1i

1
1i

2

2i

3

3i

4

4i
2 + 3i

Astute readers may think that because I have
called complex numbers “2-dimensional numbers,”
then perhaps a point on the Cartesian plane can be
represented by a single 2D number. If you’re one of
those readers, then you are absolutely correct! In
fact, the point (2, 3) in the plane can be written as
the complex number 2+3i. This sum might look like
more than one number, but it’s just a single number
as much as 5 is a single number. So the number 2+3
is a single number that is written as a sum of two
numbers. Similarly, 2 + 3i is a single 2D number
that is written as a sum of two numbers. (But 2+3i
is not 5.) The number 2+3i is the position that can
be found by starting at the origin (zero), and then
the 2 says to go 2 to the right, and the 3i says to go
3 up; the “up” in “3 up” stands for the i in 3i.

The point on this plane labeled 2+3i is a single, 2-dimensional number. Note that to
specify this point, we have to use two real numbers (2 and 3), and using both numbers,
we can write the single complex number 2 + 3i.

As another example, the point in the plane (�2.5, 7.7) can be written as the complex
number�2.5+7.7i. Another example is that the point in the plane (1,�4) can be written
as the complex number 1� 4i.

Exercise 8.4. The point (10, 8) in the plane can be represented by what complex number?

As usual, with all questions labeled “Exercise” or “Motivation,” be sure to answer
the question yourself before reading on to check your answer. You get a lot more out of
reading if you think through the question and come up with an answer yourself before
reading the answer. For this exercise, the complex number is 10 + 8i.

Motivation 8.5. The complex number i represents what point in the plane?

If you are stuck, a hint is that i can also be written as 0 + 1i. What we get is that
the complex number i represents the point in the plane with the coordinates (0, 1).
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Chapter 9

Probability

Give portions to seven, yes to eight, for you do not know what disaster may
come upon the land.
–King Solomon, Ecclesiastes 11:2, (NIV, 1984)

When math is abstract, it can be di�cult to understand, but sometimes, a small
amount of abstraction can actually simplify things. In probability, one particular thing
students sometimes struggle with is distinguishing between when numbers should be
added together and when they should be multiplied. It turns out that here, knowing a
small amount of set theory can be quite beneficial and clarify matters. Hence, we will
begin in the next section with a brief discussion of what are called sets, which will be
explained.

Probability itself is a way of measuring the size of something just like counting is a
way of measuring how many of something you have. Many questions that can be asked
in probability simply boil down to being able to count how many of something you have.

The probability of something describes in some way “how big” it is, just like length,
area, and volume are measures of how big something is. In probability, we are “measur-
ing” (or calculating) the likelihood of certain events to occur. An event that is certain
to occur has probability 1 (and so is as big as possible), and an event that cannot occur
would have probability 0 (and so is as small as possible). If you flip a fair coin once, then
the probability of heads is 1/2. If you shoot a basketball from the half-court line, you
may or may not get the basketball into the hoop (and so have two options), but since
you’d be quite a ways away from the hoop, I’d guess the probability of you getting the
ball into the hoop is quite a bit less than 1/2. If you threw the ball from the half-court
line a thousand times, and if you made it in only eight times out of a thousand, then
that would suggest the probability of you making it into the hoop from there perhaps
is approximately 8/1000. This is only an approximate, since if you flip a fair coin 1000
times, you most likely won’t get exactly 500 heads. Besides, unlike coin flips, you might
actually have gotten better at shooting hoops as you went along.

In this chapter, we’ll cover how to calculate probabilities. We will have no need
here to shoot any basketballs a thousand times. Instead, we’ll look at situations where
exact probabilities can be calculated. By the end, you should be able to calculate the
probability of getting exactly 500 heads if you flip a fair coin 1000 times. Finally, note
that this chapter will only deal with finite sets. Some sets are infinite, such as the set
of positive integers: {1, 2, 3, 4, . . .}, but in this chapter, we’ll only deal with finite sets.
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9.1 Basic set theory

? Question 9.1. What is a set?

A set is just an unordered collection of elements. For example, as I am writing this
sentence, my wife and I are the only people physically present in our condominium unit.
So then, the set of all people physically present in our condo has exactly two elements
in it: my wife and me. We could denote it as follows:

{Andrew, Andrew’s wife}.

Since elements of sets have no order to them within the set, we could alternatively write
the same set as follows:

{Andrew’s wife, Andrew}.

Another set is the set of positive integers less than 5:

{1, 2, 3, 4},

which is the same as {2, 4, 1, 3}, but writing {1, 2, 3, 4} just looks a lot nicer.
What kinds of elements can be in a set? Pretty much anything. Elements can be

numbers, letters, words, people, countries, computers, transistors, or even other sets.
The set that has literally nothing in it at all comes up reasonably often in mathe-

matics and is called the empty set and is denoted ?. The number of elements in the
empty set is 0.

The only data associated with a set is what is in it (and perhaps what is not in
it). An element cannot be in a set multiple times. Otherwise, you’d be talking about a
di↵erent mathematical concept, called a multiset, which we won’t have need of in this
book.

Motivation 9.2. What is common to the two sets A and B below?

A = {4, 5, 6} and B = {Peter, James, John}

The thing in common to them is that they both have exactly three elements. Al-
though their contents di↵er, the structure of the sets is identical. In fact, how many
elements a set contains is the only structural property a set has. Though I don’t plan
to use this term later in this chapter, the number of elements in a set is called its car-
dinality. So A has cardinality 3, and so does the set B. The set ? has cardinality 0,
and the set {a, b, c, d, e} has cardinality 5. To denote the cardinality of a set A, we will
write |A|. Hence, |{a, b, c, d, e}| = 5 and |?| = 0.

In probability, we often have a set that specifies all possible outcomes of some ex-
periment. For instance, let’s roll a regular, single die; all regular dice have six sides.
Then the set of possible outcomes is the set {1, 2, 3, 4, 5, 6}. Consider the set consisting
of rolling a 5 or 6, and call it A. So A = {5, 6}. Given A and given the set of all
possibilities, it makes sense to say what’s not in the set A. The set of all elements not
in A is called the complement of A. This would be the set {1, 2, 3, 4}. Di↵erent people
denote the complement of a set using di↵erent notation. Some write Ac, with “c” as
a superscript, and others write A, with a bar written over A. I personally prefer the
notation A, but you’re welcome to write it either way (unless your teacher requests you
to write it a certain way). Whichever you choose, you can read both symbols Ac and A
as “the complement of A.”
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Exercise 9.3. Suppose you draw a single card from a deck of regular cards (that consists
of 52 cards). Let F denote the set of all face cards (i.e., the jacks, queens, and kings of
the deck). What is F , the complement of F? Also, find |F |, the number of elements in
F .

The cards not in F are the aces as well as the 2’s through 10’s. Since there are four
suits, that makes 4 · 10 or 40 cards in F . We can also arrive at |F | = 40 by calculating
52� 4 · 3.

Whenever we take the complement of a set, it is required that we understand the
totality of all elements we are considering. In the deck of cards example, the set of all
options of what to draw is the set of all 52 cards. This set of all options can be called
the universe of discourse, and in probability, this set of all options is called the sample
space.

Exercise 9.4. Suppose we have dice with various numbers of sides. We have a blue die
that is 12-sided, a red die that is 8-sided, and a green die that is 6-sided. All our dice
have their sides numbered one through the total number of sides on that die. Depending
on which die we pick, the set of all elements we are considering is one of the following:

(a) {1, 2, 3, . . . , 6} (for the green die)

(b) {1, 2, 3, . . . , 8} (for the red die)

(c) {1, 2, 3, . . . , 12} (for the blue die)

Here, the ellipses mean to include all the integers in between. Let A be the set {1, 2, 3, 4, 5}.
For each of the above three dice, find A.

For (a), the green die, we would get that A = {6}. For (b), the red die, we get
A = {6, 7, 8}. For (c), the blue die, we get A = {6, 7, 8, 9, 10, 11, 12}. Let the reader be
encouraged that whenever we want to find the complement of the set, it will be clear
from context what the larger set is that specifies the universe of discourse (or sample
space, which here, is determined by which die we are using).

? Question 9.5. Why do we care about set complements?

So far, we have covered what the complement of a set means but haven’t yet included
any motivation on why we care. Let me do that here.

Suppose Thomas is making an eight-character password, and the characters he uses
for his password are lowercase letters and digits. So each of the eight characters has
36 options. Suppose further that Thomas has decided to make his password so that it
contains at least one digit. What is the simplest way of figuring out how many options
Thomas has? It turns out that it’s easiest to actually count the passwords that have
no digits in them, of which there are 268, and so the number of options Thomas has is
368 � 268, but this is kind of jumping ahead of ourselves. All this should be more clear
when we cover Cartesian products. The only point I want to make here is that if you
want to count how many elements are in a set, sometimes it’s a lot easier to count how
many elements are not in the set (i.e., count how many elements are in the complement
of the set).

Let me highlight a statement that is important enough to repeat:

! Key Fact 9.6. The only data associated with a set is what is in it (and perhaps
what is not in it).

218



Chapter 10

Precalculus

Undoubtedly the most important concept in all of mathematics is that of a
function. . .

– Michael Spivak, mathematician

What is the purpose of a course on precalculus? One goal is to help prepare students
for calculus. Some people have a di↵erent purpose, however. Indeed, some seem to
intend that precalculus be a time to introduce a variety of topics, not all of which are
essential for calculus.

In my opinion, the most important thing to gain in a precalculus class is better
preparation for calculus. Having taught calculus a number of times, I believe that the
most di�cult part of calculus is actually just algebra, and I think the second most
common topic that some calculus students struggle with is trigonometry. If you have a
solid understanding of algebra and trigonometry, and if you know the fundamentals of
geometry (such as being able to work with similar triangles), then that puts you in a
good position to succeed in calculus and higher mathematics.

In this chapter, I try to focus more on the topics that matter most for successfully
learning calculus. However, I do include a little bit of extra material. In addition to
the present chapter, you can consider the previous material on algebra, trigonometry,
and geometry as being a part of “precalculus.” Indeed, my favorite textbook on pre-
calculus is a little book that has just three chapters, one on each of geometry, algebra,
and trigonometry. (The book is Precalculus Mathematics in a Nutshell by George F.
Simmons.)

There is one essential topic that students do not always learn thoroughly in algebra
and trigonometry and which is indispensable to understanding calculus. That topic is
the topic of functions.

10.1 Functions

If you want to understand mathematics at the precalculus level or beyond, it is paramount
that you have a good grasp of the concept of functions. The algebra chapter includes a
section on functions, which would be very good to read if you aren’t already comfortable
with them. Let’s begin here with our first definition of what a function is. Later on in
this section, we will cover a couple of alternate definitions that you might see in some
traditional math books.
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! Key Fact 10.1. A function is just a rule that, given an input, produces an output.
The output is completely determined by what the input is.

I chose this definition intentionally because I think it is pedagogically sound. How-
ever, because you might see other definitions elsewhere on what a function is, I am
compelled to discuss other ways people define functions.

Some people word their definition slightly di↵erently. In particular, some people
write that a function is a rule that, given an input, produces a unique output. What do
they mean by the output being unique? To answer this, consider the function f(x) =

p
x,

and consider for instance f(81). The value of f(81) is 9. The value is not sometimes
9 and sometimes �9. Rather, as we have defined the meaning of the square root of
non-negative numbers,

p
81 is always 9. If you really wanted to refer to both positive

and negative 9, then you would need to write “±” in front of the square root like so:
±
p
81. You could also write it in front of 9 itself: ±9. There is no di↵erence between

±9 and ±
p
81. In sum,

p
81 by itself is always 9.

If you have a function called f , and if a is anything we’re allowed to plug into f (i.e.,
if a is in the domain of f), then f(a) is not one thing on Mondays, a di↵erent thing
on Wednesdays, and a di↵erent thing every other Friday. Rather, f(a) is completely
determined by a (assuming that f is given/defined/specified). In that sense, we could
say that f(a) is unique.

One thing easy to confuse in this discussion is that the “unique output” part does not
rule out the possibility that a function may have two separate inputs that both produce
the same output. Consider g(x) = x2. Notice that g(7) = 49, but also g(�7) = 49. The
two separate inputs of 7 and �7 both yield the output of 49. There is nothing at all
wrong with this.

Exercise 10.2. Let h(✓) = sin(✓). Find two di↵erent values of ✓ that produce the same
output when plugged into h.

Remember that you should attempt every problem labeled Exercise or Motivation
before reading the answer that follows. In this case, there happen to be infinitely many
di↵erent correct answers to this question, and you are welcome to check your work with
a calculator, if you want to. One way of coming up with two angles for ✓ is to pick them
as co-terminal angles (i.e., angles that di↵er by an integral multiple of 2⇡ radians, which
is 360�). So for instance, you could have picked 0 and 2⇡ (in radians, or 0� and 360� if
using degrees), but another example is ⇡/4 and 2⇡ + ⇡/4.

!
Key Fact 10.3. That a function produces a unique output for a given input
simply means that the input determines the output. It does not mean that it is
impossible to find two separate inputs that produce the same output.

We have thus covered one variation on Key Fact 10.1 in defining what a function is.1

Next, let’s work toward another definition that appears to be very di↵erent.
Before we get a little abstract, I want to give more examples of some functions.

All of the following arrows represent a function. I’ve intentionally made most of them
non-mathematical in nature because the concept of a function is not exclusive to math-
ematics.

The following arrows signify that an input of a particular kind is associated with an
output. Each arrow is specifying a function. While most functions used in textbooks

1As stated earlier, this alternate definition is that a function is a rule that, given an input, produces
a unique output.
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are named (such as “f” or “g”), the implicitly described functions below will remain
nameless (except that I do use the name “f” later on for any one of them). In what
follows, inputs are described on the left side, and outputs associated to the inputs are
described on the right side. Consider the following associations:

a student at Cedarville University �! his/her student ID

any license plate �! the place that the vehicle is registered

any city �! the population of that city in 2025

any gasoline car �! the average miles per gallon of that car

Here are more examples:

any pet �! the weight (in pounds) of that pet

any human being �! his/her biological mother

a stretch of DNA encoding a protein �! the sequence of amino acids of that protein

the sequence of amino acids of a protein �! the 3D shape of the folded protein

If any particular sequence of amino acids that comprise a protein do not uniquely de-
termine its 3-dimensional shape, then the last example above would not be a function.
Here are more examples:

any year between 1789 and 2024 �! the president of the USA on May 1 that year

any year since Gutenberg’s printing press �! the number of Bibles printed that year

any day since July 31, 1871 �! the rainfall in Colorado Springs that day

Allow me to give just a few more examples. For the following, only God knows the
precise associations in full:

any human (born or unborn) �! the number of hairs on his/her head

any island in the ocean �! the number of grains of sand on its beaches

any goal or plan you have �! whether or not it will succeed

Some of the above examples are actually slightly fuzzy. Many people have a pet dog
that they’ve owned since the dog was a puppy. You also might have owned a pet kitten.
Of course, the weight of a puppy or kitten changes as time goes on. If we were using
“function” in a more exact way, we would need to admit that a function doesn’t change
as time goes on. However, it is perfectly legitimate to have a function whose input is a
moment in time, and whose output is determined by that moment in time.

Now that we’ve seen a number of examples, we are ready to try to unify them all.
The following gets a little abstract, but I hope the above examples make what follows
easier to understand. The following is not a definition, but it is a helpful way of thinking
about functions:

! Key Fact 10.4. At its heart, a function is a way of associating inputs with
outputs.

Given a function f , when we write f(a) = b, we mean that a is an input that f
associates with the output f(a), which here happens to be called b. This can also be
stated as “a yields b,” or that “a produces b,” or even that “f transforms a into b.”
We could also say that “a maps to b,” but this latter usage of “maps” as a verb can
be confusing to some. To explain the word “maps,” notice that for any point a on a
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Calculus

When you improve a little each day, eventually big things occur. . .Not to-
morrow, not the next day, but eventually a big gain is made. Don’t look for
the big quick improvement. Seek the small improvement one day at a time.
That’s the only way it happens—and when it happens, it lasts.

–John Wooden, greatest basketball coach of all time

Calculus is a beautiful diamond in the land of mathematics. The heart of calculus
really boils down to three or four interconnected ideas, which when understood, are quite
simple. But isn’t calculus a di�cult subject? What is the hardest part of calculus? In
my opinion, the most di�cult part of calculus actually happens to be. . . algebra. Yes,
algebra. The second hardest part might be trigonometry. If you have a good handle on
both algebra and trigonometry, then you are well prepared to learn calculus.

Let me mention here that I am assuming readers of this chapter have a decent
background in algebra and in particular are comfortable with the concept of a function.
However, we will keep the algebra here to a minimum.

? Question 11.1. What are the three or four most important concepts in calculus?

To really answer this question is the goal of the next four sections. It isn’t a problem
if you haven’t heard of these concepts before, and so let me briefly just mention the
names of those four concepts: (1) limits, (2) derivatives, (3) integrals, and also (4) the
Fundamental Theorem of Calculus. These four ideas are closely related. In fact, deriva-
tives and integrals are built on the foundation of limits, and the Fundamental Theorem
of Calculus is precisely about the relationship between derivatives and integrals.

11.1 Limits

The concept of a limit is foundational to calculus. The present section answers the
following question.

? Question 11.2. What is a limit?

Limits are all about numbers getting closer and closer to some specific value. For
instance, suppose you are on a desert island with no water except for a one liter water
bottle full of water that never gets refilled. You decide that starting today, each day you
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will drink half of the water left. (That way, you always have some water left.) Today,
you drink 1/2 of the liter. Tomorrow, you drink 1/2 of the 1/2 left (so 1/4 of a liter of
water).

Motivation 11.3. By the end of tomorrow, how much water will be left?

To get the answer, notice that if you always drink half of what’s left, then the amount
you drink that day is how much is left. So there will be 1/4 of a liter left.

The next day (the day after tomorrow), you’ll drink 1/2 of what’s left (so 1/8 of a
liter of water).

Motivation 11.4. By the end of the day after tomorrow, how much water will be left?

Since the third day we drink (1/2)3 of the water, or 1/8, then that is how much will
be left.

Motivation 11.5. The amount of water you have left in your water bottle is approaching
what as the days go by?

In our hypothetical scenario, the amount is getting closer and closer to zero. What
we have computed then is a limit. The amount of water left in your water bottle
approaches zero, as time goes on. That can be thought of as follows. Consider the
following sequence of numbers:

1

2
,
1

4
,
1

8
,
1

16
,
1

32
, . . .

Then the limit of that sequence is 0. In symbols, we write it in the following way, where
we use the variable n to represent the day number:

lim
n!1

1

2n
= 0.

This is read as follows: “The limit as n approaches infinity of 1 over 2 to the n is 0.”
We will next turn to a question that has confused many people:

? Question 11.6. Consider 0.99999. . . (repeating 9’s without end):

Is 0.99999 . . . = 1?

As stated, by 0.99999. . . , I mean that the 9’s go on and on forever, whatever that
means. Now that we mention it, that leads us to the following question which will help
us answer the previous one:

? Question 11.7. What do we really mean by an infinite decimal (by a decimal
that goes on forever)?

Since we are considering the number 0.99999 . . ., let’s give it a name, say L.

Motivation 11.8. Does L equal 0.9?

The answer is no since L is bigger because it has more 9’s in its decimal expansion.

Motivation 11.9. Does L equal 0.999?

Well, the same reasoning says that no, L 6= 0.999, since L is bigger due to having
more 9’s in its decimal expansion.
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Motivation 11.10. Does L equal 0.99999?

Just as before, the answer is that no, L is bigger due to having more 9’s in its decimal
expansion.

We almost have the answer on what L is:

Motivation 11.11. Is there a number that the following sequence is getting closer and
closer to?

0.9, 0.99, 0.999, 0.9999, 0.99999, . . . (11.1)

If you think about it, you could probably say that yes, those numbers are getting
closer and closer to 1. Is the 10th number on that list equal to 1? No. How about the
50th? Nope, but the 50th number (a number with fifty 9’s after the decimal point) sure
is super close to 1.

What we mean then by the repeating decimal is that it equals the limit. This is
actually a definition of what we mean by the infinite decimal. As you write down more
and more decimals in its decimal expansion, you get closer and closer to the limit even
if you never, no matter how many 9’s you write down, ever reach the number 1. Of
course, I gave the number 0.99999 . . . the name L because that letter suggests that the
number is a limit, which it is.

So the meaning of L is that it is the limit of the sequence (11.1) above, which is in
fact 1. In other words, the answer to Question 11.6 is yes. Of course, there is a much
simpler “proof” that 0.9999. . . equals 1, but it takes infinite decimals for granted:

Simplified “proof”. Note that 1/3 + 1/3 + 1/3 = 1, but we have the following:

1

3
= 0.33333 . . .

So just add three infinite decimal expansions (of repeating 3’s) together to get repeating
9’s. Therefore, since 1/3 + 1/3 + 1/3 equals 1, and since it also equals 0.99999. . . , then
0.99999. . . = 1.

The reason why I put the word “proof” in quotes (and also why I say it is simplified) is
that this argument glosses over the important details of what infinite decimal expansions
even mean. While the argument is sound, it just jumps over subtleties that are explained
more in the discussion prior to it. There is nothing wrong with sometimes skipping
subtleties, but I brought up infinite decimals for the very purpose of talking about
limits, which the above simplified proof ignores.

Going back to limits, just as 1 is the limit of the sequence 0.9, 0.99, 0.999, 0.9999,
. . . , we have that ⇡ is the limit of the following sequence:

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .

But of course, there is no pattern discernible here to the digits of ⇡. So to answer
Question 11.7, the meaning of an infinite decimal expansion is that it equals the limit
of what you get by using more and more of the digits in the expansion.

11.1.1 Two tips for limits

When dealing with limits and infinity, there are two important principles to keep in
mind. Let the phrase “a small number” denote some tiny positive number, and let “a
big number” denote some huge positive number. Here are the two important but simple
principles to remember for limits:

1

a small number
= a big number and
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1

a big number
= a small number

To use this most e↵ectively, you should note that the “1” in the above fractions can be
replaced with any positive number.

Before applying the above principles in some examples, let me address the inquisitive
readers who might ask the following:

? Question 11.12. What do you mean by “small” or “large”? In other words,
what really is a small number, and what is a big number?

After all, is 1/100000 a small number? Is a billion a big number? Believe it or not,
the answer to Question 11.12 is quite important and relevant for scientists, software
engineers, economists, and many other people.

Motivation 11.13. Can you think of a context where the number 1 is enormously large?

As always for “Motivation” questions, please do think about this for a minute. Here
is an example I thought of: Imagine eating 1 bu↵alo for dinner. It would be impossible
for a human to, in a single setting, eat all the meat in 1 entire bu↵alo (assuming the
bu↵alo is a healthy adult bu↵alo).

Motivation 11.14. Can you think of a context where the number 1012 (one trillion) is
tiny?

Actually, what I will do instead is show that the number 1022 is sometimes incredibly
small. Indeed, to drink only 1022 molecules of water in a day is a minuscule amount of
water to drink, being less than a gram of water. Hence, in the context of counting how
many molecules of water you drink in a day, the number 1022 is tiny.

Motivation 11.15. If the number 1 is sometimes enormously big, and if the number
1022 is sometimes tiny, then what does that say on what a small number or a big number
is?

What it says is that what is small and what is big simply depends on context. The
number 1 might be small or big or just a medium sized number; it all depends on the
context.

This is quite important because sometimes people try to intimidate others with a
number such as a billion or a trillion, saying how huge it is, when in fact you need to
know a context to determine how big it is.

Next, let’s go over examples of using the two principles mentioned at the beginning
of Section 11.1.1 by finding the following limits.

We will find. . .

A = lim
x!1

2

x
, and B = lim

x!0

5

x2
.

For A, if you aren’t sure, you can begin by just plugging in some positive number for
x in the expression 2/x, such as x = 10. Then 2

10 = 0.2 is what 2/x simplifies to. But
don’t stop there, we can plug in 1000 for x. Then 2

1000 = 0.002 is what 2/x simplifies
to. What happens if x is even bigger? Then 2/x gets even smaller.

Motivation 11.16. What do you think the limit A is? Recall A = lim
x!1

2

x
.

If you aren’t sure, you can plug in an even bigger number for x. What does 2
x

approach as x gets larger and larger? What it approaches is zero, and so A equals zero.

287



Chapter 12

What is Mathematics?

Finally, brothers, whatever is true, whatever is honorable, whatever is just,
whatever is pure, whatever is lovely, whatever is commendable, if there is any
excellence, if there is anything worthy of praise, think about these things.

–Paul, Philippians 4:8 (ESV)

Is math ever interesting? Does it have anything to say beyond the typical stu↵ we
learned in school? Yes!–to both of those questions, and if you give me the chance, I’d
like to show that to you in this chapter.

True, I will soon give a definition of mathematics. However, to know what math is
about, it is necessary to have examples of beautiful mathematics. So a general definition
as you might find in a dictionary won’t by itself give the whole picture.

To understand what math is about, you must see good examples of mathematics.
Of course, if you have read the previous chapters of this book, then you will have seen
many examples of mathematics. Some academics high in their towers might look down
on the math we’ve done, but despite what they say, what we’ve gone through in this
book so far really is real mathematics.

? Question 12.1. So. . . what is mathematics?

A boring person might say that it’s what we’ve been doing throughout this whole
book! But that’s pretty obvious. Although the present chapter attempts to answer this
question by giving beautiful examples of math you have not seen before, allow me to
give a definition here.

Mathematics is the art and rigorous study of patterns.

Math involves abstract ideas and reasoning logically about them. The patterns might
have to do with shape or with quantities that can be counted or measured. Central to
math are ideas. Thankfully, a rigorous study of patterns turns out to be very helpful
when trying to understand the world around us. Some mathematicians (called “pure
mathematicians”) largely ignore the world around them and focus only on pure ideas and
abstract concepts. Others (called “applied mathematicians”) try to find applications of
their ideas in the outside world. Applied mathematicians create and analyze models of
some phenomena in the real world. There is much variety in math, just as there is much
variety among mathematicians. This chapter (and this book as a whole) focuses more
on math itself, mostly ignoring applications to the real world. This bias or focus simply
reflects my own background.
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If math really has enormous variety in it, wouldn’t it be sad if a book that includes
a broad spectrum of math didn’t also include some really cool stu↵ that you’ve never
seen before? Someone might object to this question and say that the explanations given
in this book are cool and new to many readers. However, wouldn’t it be nice to do more
than just restrict ourselves to the rules you learned in school?

Don’t get me wrong. I think the earlier chapters include some really cool stu↵.
However, there is a lot of fascinating mathematics that most people don’t learn in
middle school or high school.

When talking about interesting mathematics, I have a choice to make: Should I only
include results that I can give full justification for why they are true, or should I permit
myself to share other extremely cool math too? Are there true mathematical statements
which are much easier to state than to prove? Yes, there are many such truths in math.
My decision then is to include some of the beautiful diamonds of math, even if including
a proof or justification is too much to ask.

So let me take you on a tour in the mathematical landscape and show you some of
the beautiful views. You can appreciate the scenery even if you never read another math
book. Of course, a few readers just might treat this as only the start of an adventure.
Whether or not you want to read another math book, let me say that it’s perfectly okay
(good even) if you have other pursuits besides mathematics. I’ll admit it, math isn’t
the only important thing in life, but it is important to many people. Regardless, I hope
this book helps many readers to want to learn more math.

12.1 How this book di↵ers from traditional math

In practice, mathematicians often work out examples in order to gain insight. However,
when it is time to write a proof, the examples are usually left out entirely. In this book,
rather than intend to always give proofs, I have often instead given examples. Also,
proofs are supposed to be rigorous, but to get a proof, you sometimes have to give a
lot more detail than just the main ideas. I have chosen here to focus on the essence of
what is going on rather than include all the gory details. There is a time to include such
detail, but I don’t think the present book is the best place for such rigor.

Astute readers might notice that some of the rules I have explained in this book
are listed in other books as definitions. Can there be reasons for definitions, or are
they arbitrary? When something is given as a definition, people often think they must
accept it blindly. In fact, one popular math book1 at one point specifically states this
when talking about the fact that

p
2 = 21/2. That author says, “There is nothing to

understand, for this is a definition of what we mean. . . ” But unfortunately, that author
is misguided here. As a quick recap, the key equation for exponents is that (for b 6= 0)
we want that for all x and y,

bxby = bx+y. (the key equation for exponents)

This rule works perfectly well when x and y are positive integers. It is precisely because
we want this rule to be true for all x and y that we are forced into agreeing that 21/2

is a number whose square is 2. (It is also due to the above key equation that negative
exponents work the way they do. If we want the key equation for exponents to hold
for all real values of x and y, then we are forced into the fact that b�x = 1/bx, which
some people state as a definition.) So then, even though some people declare 21/2 to be
defined as

p
2, that doesn’t mean that there is no reason why such a definition is made

in the first place. Saying otherwise is quite misguided.

1It is the book Algebra 2 by John H. Saxon.
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There is one more facet of this discussion that is worth mentioning. The issue is that
in mathematics, it is often the case that there are multiple, equivalent ways of defining
something. Precisely which definition is used to describe a given concept is sometimes
a matter of opinion, taste, and expediency. Although math is objective, and although
people cannot make up anything at all (if they want it to be useful and true), it is still
the case that there often is much choice in how concepts are described.

For example, consider the functions f(x) = 2x and g(x) = log2(x). These two
functions are inverses of each other. Should you first define 2x and then define log2(x)
as the inverse of 2x? Or should you first define log2(x) and then define 2x as the inverse
of log2(x)? As a third option, should you instead define both functions 2x and log2(x)
separately (without reference to the other one), and then prove a theorem that they
are inverses of each other? Already, we have three options of how to arrive at 2x and
log2(x), and it turns out that there are yet more options than what I listed (such as
starting with the more convenient number e as the base and then build o↵ of that).
If you really want to define 2x and log2(x) properly (for all appropriate values of x),
it actually requires a bit of calculus, but I think people should be introduced to these
functions before they take calculus.

It probably is the case that when most people see a definition, they think that it
must be accepted blindly. That is one reason why I have not chosen to list all such rules
as definitions. Rather, I have described the rules as what they need to be in order for
some pattern to hold true. Math is all about patterns, and so I believe my approach is
justified.

12.2 The Königsberg bridge problem

There was a city named Königsberg that was on the Pregel river in Prussia. Part of the
city was on two islands in the river, and part of the city was on either bank. There were
seven bridges connecting the di↵erent land masses as follows (not drawn to scale):

The city was thus separated into four land masses: two islands and the two sides of the
river. The citizens of Königsberg wondered whether it was possible, starting on one of
the four land masses, to cross every bridge exactly once and end up in the land mass
you started at.

Of course, you are not allowed to cheat by crossing from one land mass to another
by any means other than a bridge. (For example, you are not allowed to swim or use a
boat.)

A solution to this problem (either in the a�rmative or a proof that it was impossible)
was given by the mathematician Leonhard Euler in the 1700s.

Exercise 12.2. Spend a few minutes trying to solve this problem yourself. What is
your opinion on whether or not it is possible, starting from one land mass, to cross each
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of fractions, see fractions, addition
of logarithms, 129
of square roots, 88
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argument from authority, 168
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asymptotic, 340
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bandwagon fallacy, 168
base, 32
basketball coach, see John Wooden
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binomial coe�cients, 236
bulverism, 170
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cardinality, 217, 330
Cavalieri’s Principle, 143
change of base formula, see logarithms,
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circular reasoning, 165
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common denominator, 4
commutative, 93
commutativity, 28, 52
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applications, 212
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to trig identities, 212
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conditionally convergent series, 345
confirmation bias, 169
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cosine, 174, 176, 180

convert to sine, 196
di↵erence identity, 197
double-angle identity, 189
even symmetry, 187
graph of, 181
half angle identity, 190
law of, 199
periodicity, 188
product-to-sum rule, 272
sum identity, 188, 197

cotangent, 191
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with more than one variable, 102
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Euler’s formula, 210
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decreasing, 113
definition, 77, 254
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greater than, see inequalities
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Wooden

Hitchens’ razor, 164
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I’m entitled to my opinion, 168
if. . . then, see conditional statement
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numbers
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increasing function, 112
indefinite integrals, 313
independent event, 228
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induction
mathematical, 277
scientific, 165

inequalities, 110
reversing the direction, 112

infinity, 159, 314, 329
infinte series, 316
integer, 157
integers, 339
integrals, 303, 313

definite, 305
generalizing addition, 306
generalizing multiplication, 307
indefinite, 313

intermediate value theorem, 346
inverse (logical), 153
inverse of a function, see functions,

inverse of
irrational number, 157

J. Warner Wallace, 167
James Clerk Maxwell, 166
Jeremiah, 166
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John Lennox, 165
John Wooden, 1, 17, 284

King Solomon, see Solomon

lattice method, see multiplication,
lattice method

law of cosines, 199
law of sines, 198
less than, see inequalities
limits, 147, 284, 286

of indeterminate form, 314
lines, 41
logarithms, 123, 322, 323

change of base formula, 132
exponent rule, 131
product-to-sum rule, 129

logical fallacies, 163
logically equivalent, 155

mathematical induction, 277
Michael Faraday, 166
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modular arithmetic, 169
multiplication
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lattice method, 55
of fractions, 6
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n choose k, see binomial coe�cients
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non-Euclidean geometry, 167
Norman Geisler, 167
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order doesn’t matter, 236
order matters, 236
order of operations, 18

parabolas, 83, 84, 273
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Pascal’s wager, 169
Paul, 165, 325
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permutation, 236, 345
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piecewise function, 86
plotting a function, see functions,
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polynomials, 93, 134, 269
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prime numbers, 159, 337, 340

infinitely many, 159
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proof, 148, 157, 159, 162

by contradiction, 158
by induction, 277

Proverbs, iii, 47, 123, 163, 171, 204
Pythagorean identity, 187
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191
Pythagorean Theorem, 138
Pythagorean triples, 333

quadratic formula, 121
going beyond, 335

radians, 172
range, 79, 282
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sets, 217
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complement, 217
element of, 219
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sigma notation, 280
similar triangles, 147, 177
Simon Greenleaf, 167
sine, 174, 180

di↵erence identity, 197
graph of, 183
half angle identity, 190
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periodicity, 188
product-to-sum rule, 272
sum identity, 188, 192

slope, 42, 43
Solomon, i, 73, 123, 163, 171, 204, 216
solving for x, 23, 105, 127, 267
sound argument, 161
special pleading, 165
square roots, 74, 88, 265
Stanislaw Ulam, 322
Stephen Hawking, 165
straw man, 163

tangent, 174, 180
graph of, 185
sum identity, 191

theorem, 160
triangles

area of, 141
sum of angles, 140, 167

unit circle, 177, 180, 182, 183, 185, 187,
188, 196

unstated assumptions, 166

valid argument, 161
variables, 20, 105

in fractions, 96, 97
Venn diagram, 221
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x-coordinate, 41

y-coordinate, 41
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